LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctgsen()

subroutine ctgsen ( integer  ijob,
logical  wantq,
logical  wantz,
logical, dimension( * )  select,
integer  n,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldb, * )  b,
integer  ldb,
complex, dimension( * )  alpha,
complex, dimension( * )  beta,
complex, dimension( ldq, * )  q,
integer  ldq,
complex, dimension( ldz, * )  z,
integer  ldz,
integer  m,
real  pl,
real  pr,
real, dimension( * )  dif,
complex, dimension( * )  work,
integer  lwork,
integer, dimension( * )  iwork,
integer  liwork,
integer  info 
)

CTGSEN

Download CTGSEN + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CTGSEN reorders the generalized Schur decomposition of a complex
 matrix pair (A, B) (in terms of an unitary equivalence trans-
 formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
 appears in the leading diagonal blocks of the pair (A,B). The leading
 columns of Q and Z form unitary bases of the corresponding left and
 right eigenspaces (deflating subspaces). (A, B) must be in
 generalized Schur canonical form, that is, A and B are both upper
 triangular.

 CTGSEN also computes the generalized eigenvalues

          w(j)= ALPHA(j) / BETA(j)

 of the reordered matrix pair (A, B).

 Optionally, the routine computes estimates of reciprocal condition
 numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
 (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
 between the matrix pairs (A11, B11) and (A22,B22) that correspond to
 the selected cluster and the eigenvalues outside the cluster, resp.,
 and norms of "projections" onto left and right eigenspaces w.r.t.
 the selected cluster in the (1,1)-block.
Parameters
[in]IJOB
          IJOB is INTEGER
          Specifies whether condition numbers are required for the
          cluster of eigenvalues (PL and PR) or the deflating subspaces
          (Difu and Difl):
           =0: Only reorder w.r.t. SELECT. No extras.
           =1: Reciprocal of norms of "projections" onto left and right
               eigenspaces w.r.t. the selected cluster (PL and PR).
           =2: Upper bounds on Difu and Difl. F-norm-based estimate
               (DIF(1:2)).
           =3: Estimate of Difu and Difl. 1-norm-based estimate
               (DIF(1:2)).
               About 5 times as expensive as IJOB = 2.
           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
               version to get it all.
           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
[in]WANTQ
          WANTQ is LOGICAL
          .TRUE. : update the left transformation matrix Q;
          .FALSE.: do not update Q.
[in]WANTZ
          WANTZ is LOGICAL
          .TRUE. : update the right transformation matrix Z;
          .FALSE.: do not update Z.
[in]SELECT
          SELECT is LOGICAL array, dimension (N)
          SELECT specifies the eigenvalues in the selected cluster. To
          select an eigenvalue w(j), SELECT(j) must be set to
          .TRUE..
[in]N
          N is INTEGER
          The order of the matrices A and B. N >= 0.
[in,out]A
          A is COMPLEX array, dimension(LDA,N)
          On entry, the upper triangular matrix A, in generalized
          Schur canonical form.
          On exit, A is overwritten by the reordered matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
[in,out]B
          B is COMPLEX array, dimension(LDB,N)
          On entry, the upper triangular matrix B, in generalized
          Schur canonical form.
          On exit, B is overwritten by the reordered matrix B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
[out]ALPHA
          ALPHA is COMPLEX array, dimension (N)
[out]BETA
          BETA is COMPLEX array, dimension (N)

          The diagonal elements of A and B, respectively,
          when the pair (A,B) has been reduced to generalized Schur
          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
          eigenvalues.
[in,out]Q
          Q is COMPLEX array, dimension (LDQ,N)
          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
          On exit, Q has been postmultiplied by the left unitary
          transformation matrix which reorder (A, B); The leading M
          columns of Q form orthonormal bases for the specified pair of
          left eigenspaces (deflating subspaces).
          If WANTQ = .FALSE., Q is not referenced.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= 1.
          If WANTQ = .TRUE., LDQ >= N.
[in,out]Z
          Z is COMPLEX array, dimension (LDZ,N)
          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
          On exit, Z has been postmultiplied by the left unitary
          transformation matrix which reorder (A, B); The leading M
          columns of Z form orthonormal bases for the specified pair of
          left eigenspaces (deflating subspaces).
          If WANTZ = .FALSE., Z is not referenced.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z. LDZ >= 1.
          If WANTZ = .TRUE., LDZ >= N.
[out]M
          M is INTEGER
          The dimension of the specified pair of left and right
          eigenspaces, (deflating subspaces) 0 <= M <= N.
[out]PL
          PL is REAL
[out]PR
          PR is REAL

          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
          reciprocal  of the norm of "projections" onto left and right
          eigenspace with respect to the selected cluster.
          0 < PL, PR <= 1.
          If M = 0 or M = N, PL = PR  = 1.
          If IJOB = 0, 2 or 3 PL, PR are not referenced.
[out]DIF
          DIF is REAL array, dimension (2).
          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
          estimates of Difu and Difl, computed using reversed
          communication with CLACN2.
          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
          If IJOB = 0 or 1, DIF is not referenced.
[out]WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >=  1
          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
[in]LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK. LIWORK >= 1.
          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the IWORK array,
          returns this value as the first entry of the IWORK array, and
          no error message related to LIWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
            =0: Successful exit.
            <0: If INFO = -i, the i-th argument had an illegal value.
            =1: Reordering of (A, B) failed because the transformed
                matrix pair (A, B) would be too far from generalized
                Schur form; the problem is very ill-conditioned.
                (A, B) may have been partially reordered.
                If requested, 0 is returned in DIF(*), PL and PR.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  CTGSEN first collects the selected eigenvalues by computing unitary
  U and W that move them to the top left corner of (A, B). In other
  words, the selected eigenvalues are the eigenvalues of (A11, B11) in

              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
                              ( 0  A22),( 0  B22) n2
                                n1  n2    n1  n2

  where N = n1+n2 and U**H means the conjugate transpose of U. The first
  n1 columns of U and W span the specified pair of left and right
  eigenspaces (deflating subspaces) of (A, B).

  If (A, B) has been obtained from the generalized real Schur
  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
  reordered generalized Schur form of (C, D) is given by

           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,

  and the first n1 columns of Q*U and Z*W span the corresponding
  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).

  Note that if the selected eigenvalue is sufficiently ill-conditioned,
  then its value may differ significantly from its value before
  reordering.

  The reciprocal condition numbers of the left and right eigenspaces
  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
  be returned in DIF(1:2), corresponding to Difu and Difl, resp.

  The Difu and Difl are defined as:

       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
  and
       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],

  where sigma-min(Zu) is the smallest singular value of the
  (2*n1*n2)-by-(2*n1*n2) matrix

       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
            [ kron(In2, B11)  -kron(B22**H, In1) ].

  Here, Inx is the identity matrix of size nx and A22**H is the
  conjugate transpose of A22. kron(X, Y) is the Kronecker product between
  the matrices X and Y.

  When DIF(2) is small, small changes in (A, B) can cause large changes
  in the deflating subspace. An approximate (asymptotic) bound on the
  maximum angular error in the computed deflating subspaces is

       EPS * norm((A, B)) / DIF(2),

  where EPS is the machine precision.

  The reciprocal norm of the projectors on the left and right
  eigenspaces associated with (A11, B11) may be returned in PL and PR.
  They are computed as follows. First we compute L and R so that
  P*(A, B)*Q is block diagonal, where

       P = ( I -L ) n1           Q = ( I R ) n1
           ( 0  I ) n2    and        ( 0 I ) n2
             n1 n2                    n1 n2

  and (L, R) is the solution to the generalized Sylvester equation

       A11*R - L*A22 = -A12
       B11*R - L*B22 = -B12

  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
  An approximate (asymptotic) bound on the average absolute error of
  the selected eigenvalues is

       EPS * norm((A, B)) / PL.

  There are also global error bounds which valid for perturbations up
  to a certain restriction:  A lower bound (x) on the smallest
  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
  (i.e. (A + E, B + F), is

   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).

  An approximate bound on x can be computed from DIF(1:2), PL and PR.

  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
  (L', R') and unperturbed (L, R) left and right deflating subspaces
  associated with the selected cluster in the (1,1)-blocks can be
  bounded as

   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))

  See LAPACK User's Guide section 4.11 or the following references
  for more information.

  Note that if the default method for computing the Frobenius-norm-
  based estimate DIF is not wanted (see CLATDF), then the parameter
  IDIFJB (see below) should be changed from 3 to 4 (routine CLATDF
  (IJOB = 2 will be used)). See CTGSYL for more details.
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

Definition at line 430 of file ctgsen.f.

433*
434* -- LAPACK computational routine --
435* -- LAPACK is a software package provided by Univ. of Tennessee, --
436* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
437*
438* .. Scalar Arguments ..
439 LOGICAL WANTQ, WANTZ
440 INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
441 $ M, N
442 REAL PL, PR
443* ..
444* .. Array Arguments ..
445 LOGICAL SELECT( * )
446 INTEGER IWORK( * )
447 REAL DIF( * )
448 COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
449 $ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
450* ..
451*
452* =====================================================================
453*
454* .. Parameters ..
455 INTEGER IDIFJB
456 parameter( idifjb = 3 )
457 REAL ZERO, ONE
458 parameter( zero = 0.0e+0, one = 1.0e+0 )
459* ..
460* .. Local Scalars ..
461 LOGICAL LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
462 INTEGER I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
463 $ N1, N2
464 REAL DSCALE, DSUM, RDSCAL, SAFMIN
465 COMPLEX TEMP1, TEMP2
466* ..
467* .. Local Arrays ..
468 INTEGER ISAVE( 3 )
469* ..
470* .. External Functions ..
471 REAL SROUNDUP_LWORK
472 EXTERNAL sroundup_lwork
473* ..
474* .. External Subroutines ..
475 REAL SLAMCH
476 EXTERNAL clacn2, clacpy, classq, cscal, ctgexc, ctgsyl,
477 $ slamch, xerbla
478* ..
479* .. Intrinsic Functions ..
480 INTRINSIC abs, cmplx, conjg, max, sqrt
481* ..
482* .. Executable Statements ..
483*
484* Decode and test the input parameters
485*
486 info = 0
487 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
488*
489 IF( ijob.LT.0 .OR. ijob.GT.5 ) THEN
490 info = -1
491 ELSE IF( n.LT.0 ) THEN
492 info = -5
493 ELSE IF( lda.LT.max( 1, n ) ) THEN
494 info = -7
495 ELSE IF( ldb.LT.max( 1, n ) ) THEN
496 info = -9
497 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
498 info = -13
499 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
500 info = -15
501 END IF
502*
503 IF( info.NE.0 ) THEN
504 CALL xerbla( 'CTGSEN', -info )
505 RETURN
506 END IF
507*
508 ierr = 0
509*
510 wantp = ijob.EQ.1 .OR. ijob.GE.4
511 wantd1 = ijob.EQ.2 .OR. ijob.EQ.4
512 wantd2 = ijob.EQ.3 .OR. ijob.EQ.5
513 wantd = wantd1 .OR. wantd2
514*
515* Set M to the dimension of the specified pair of deflating
516* subspaces.
517*
518 m = 0
519 IF( .NOT.lquery .OR. ijob.NE.0 ) THEN
520 DO 10 k = 1, n
521 alpha( k ) = a( k, k )
522 beta( k ) = b( k, k )
523 IF( k.LT.n ) THEN
524 IF( SELECT( k ) )
525 $ m = m + 1
526 ELSE
527 IF( SELECT( n ) )
528 $ m = m + 1
529 END IF
530 10 CONTINUE
531 END IF
532*
533 IF( ijob.EQ.1 .OR. ijob.EQ.2 .OR. ijob.EQ.4 ) THEN
534 lwmin = max( 1, 2*m*(n-m) )
535 liwmin = max( 1, n+2 )
536 ELSE IF( ijob.EQ.3 .OR. ijob.EQ.5 ) THEN
537 lwmin = max( 1, 4*m*(n-m) )
538 liwmin = max( 1, 2*m*(n-m), n+2 )
539 ELSE
540 lwmin = 1
541 liwmin = 1
542 END IF
543*
544 work( 1 ) = sroundup_lwork(lwmin)
545 iwork( 1 ) = liwmin
546*
547 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
548 info = -21
549 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
550 info = -23
551 END IF
552*
553 IF( info.NE.0 ) THEN
554 CALL xerbla( 'CTGSEN', -info )
555 RETURN
556 ELSE IF( lquery ) THEN
557 RETURN
558 END IF
559*
560* Quick return if possible.
561*
562 IF( m.EQ.n .OR. m.EQ.0 ) THEN
563 IF( wantp ) THEN
564 pl = one
565 pr = one
566 END IF
567 IF( wantd ) THEN
568 dscale = zero
569 dsum = one
570 DO 20 i = 1, n
571 CALL classq( n, a( 1, i ), 1, dscale, dsum )
572 CALL classq( n, b( 1, i ), 1, dscale, dsum )
573 20 CONTINUE
574 dif( 1 ) = dscale*sqrt( dsum )
575 dif( 2 ) = dif( 1 )
576 END IF
577 GO TO 70
578 END IF
579*
580* Get machine constant
581*
582 safmin = slamch( 'S' )
583*
584* Collect the selected blocks at the top-left corner of (A, B).
585*
586 ks = 0
587 DO 30 k = 1, n
588 swap = SELECT( k )
589 IF( swap ) THEN
590 ks = ks + 1
591*
592* Swap the K-th block to position KS. Compute unitary Q
593* and Z that will swap adjacent diagonal blocks in (A, B).
594*
595 IF( k.NE.ks )
596 $ CALL ctgexc( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
597 $ ldz, k, ks, ierr )
598*
599 IF( ierr.GT.0 ) THEN
600*
601* Swap is rejected: exit.
602*
603 info = 1
604 IF( wantp ) THEN
605 pl = zero
606 pr = zero
607 END IF
608 IF( wantd ) THEN
609 dif( 1 ) = zero
610 dif( 2 ) = zero
611 END IF
612 GO TO 70
613 END IF
614 END IF
615 30 CONTINUE
616 IF( wantp ) THEN
617*
618* Solve generalized Sylvester equation for R and L:
619* A11 * R - L * A22 = A12
620* B11 * R - L * B22 = B12
621*
622 n1 = m
623 n2 = n - m
624 i = n1 + 1
625 CALL clacpy( 'Full', n1, n2, a( 1, i ), lda, work, n1 )
626 CALL clacpy( 'Full', n1, n2, b( 1, i ), ldb, work( n1*n2+1 ),
627 $ n1 )
628 ijb = 0
629 CALL ctgsyl( 'N', ijb, n1, n2, a, lda, a( i, i ), lda, work,
630 $ n1, b, ldb, b( i, i ), ldb, work( n1*n2+1 ), n1,
631 $ dscale, dif( 1 ), work( n1*n2*2+1 ),
632 $ lwork-2*n1*n2, iwork, ierr )
633*
634* Estimate the reciprocal of norms of "projections" onto
635* left and right eigenspaces
636*
637 rdscal = zero
638 dsum = one
639 CALL classq( n1*n2, work, 1, rdscal, dsum )
640 pl = rdscal*sqrt( dsum )
641 IF( pl.EQ.zero ) THEN
642 pl = one
643 ELSE
644 pl = dscale / ( sqrt( dscale*dscale / pl+pl )*sqrt( pl ) )
645 END IF
646 rdscal = zero
647 dsum = one
648 CALL classq( n1*n2, work( n1*n2+1 ), 1, rdscal, dsum )
649 pr = rdscal*sqrt( dsum )
650 IF( pr.EQ.zero ) THEN
651 pr = one
652 ELSE
653 pr = dscale / ( sqrt( dscale*dscale / pr+pr )*sqrt( pr ) )
654 END IF
655 END IF
656 IF( wantd ) THEN
657*
658* Compute estimates Difu and Difl.
659*
660 IF( wantd1 ) THEN
661 n1 = m
662 n2 = n - m
663 i = n1 + 1
664 ijb = idifjb
665*
666* Frobenius norm-based Difu estimate.
667*
668 CALL ctgsyl( 'N', ijb, n1, n2, a, lda, a( i, i ), lda, work,
669 $ n1, b, ldb, b( i, i ), ldb, work( n1*n2+1 ),
670 $ n1, dscale, dif( 1 ), work( n1*n2*2+1 ),
671 $ lwork-2*n1*n2, iwork, ierr )
672*
673* Frobenius norm-based Difl estimate.
674*
675 CALL ctgsyl( 'N', ijb, n2, n1, a( i, i ), lda, a, lda, work,
676 $ n2, b( i, i ), ldb, b, ldb, work( n1*n2+1 ),
677 $ n2, dscale, dif( 2 ), work( n1*n2*2+1 ),
678 $ lwork-2*n1*n2, iwork, ierr )
679 ELSE
680*
681* Compute 1-norm-based estimates of Difu and Difl using
682* reversed communication with CLACN2. In each step a
683* generalized Sylvester equation or a transposed variant
684* is solved.
685*
686 kase = 0
687 n1 = m
688 n2 = n - m
689 i = n1 + 1
690 ijb = 0
691 mn2 = 2*n1*n2
692*
693* 1-norm-based estimate of Difu.
694*
695 40 CONTINUE
696 CALL clacn2( mn2, work( mn2+1 ), work, dif( 1 ), kase,
697 $ isave )
698 IF( kase.NE.0 ) THEN
699 IF( kase.EQ.1 ) THEN
700*
701* Solve generalized Sylvester equation
702*
703 CALL ctgsyl( 'N', ijb, n1, n2, a, lda, a( i, i ), lda,
704 $ work, n1, b, ldb, b( i, i ), ldb,
705 $ work( n1*n2+1 ), n1, dscale, dif( 1 ),
706 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
707 $ ierr )
708 ELSE
709*
710* Solve the transposed variant.
711*
712 CALL ctgsyl( 'C', ijb, n1, n2, a, lda, a( i, i ), lda,
713 $ work, n1, b, ldb, b( i, i ), ldb,
714 $ work( n1*n2+1 ), n1, dscale, dif( 1 ),
715 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
716 $ ierr )
717 END IF
718 GO TO 40
719 END IF
720 dif( 1 ) = dscale / dif( 1 )
721*
722* 1-norm-based estimate of Difl.
723*
724 50 CONTINUE
725 CALL clacn2( mn2, work( mn2+1 ), work, dif( 2 ), kase,
726 $ isave )
727 IF( kase.NE.0 ) THEN
728 IF( kase.EQ.1 ) THEN
729*
730* Solve generalized Sylvester equation
731*
732 CALL ctgsyl( 'N', ijb, n2, n1, a( i, i ), lda, a, lda,
733 $ work, n2, b( i, i ), ldb, b, ldb,
734 $ work( n1*n2+1 ), n2, dscale, dif( 2 ),
735 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
736 $ ierr )
737 ELSE
738*
739* Solve the transposed variant.
740*
741 CALL ctgsyl( 'C', ijb, n2, n1, a( i, i ), lda, a, lda,
742 $ work, n2, b, ldb, b( i, i ), ldb,
743 $ work( n1*n2+1 ), n2, dscale, dif( 2 ),
744 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
745 $ ierr )
746 END IF
747 GO TO 50
748 END IF
749 dif( 2 ) = dscale / dif( 2 )
750 END IF
751 END IF
752*
753* If B(K,K) is complex, make it real and positive (normalization
754* of the generalized Schur form) and Store the generalized
755* eigenvalues of reordered pair (A, B)
756*
757 DO 60 k = 1, n
758 dscale = abs( b( k, k ) )
759 IF( dscale.GT.safmin ) THEN
760 temp1 = conjg( b( k, k ) / dscale )
761 temp2 = b( k, k ) / dscale
762 b( k, k ) = dscale
763 CALL cscal( n-k, temp1, b( k, k+1 ), ldb )
764 CALL cscal( n-k+1, temp1, a( k, k ), lda )
765 IF( wantq )
766 $ CALL cscal( n, temp2, q( 1, k ), 1 )
767 ELSE
768 b( k, k ) = cmplx( zero, zero )
769 END IF
770*
771 alpha( k ) = a( k, k )
772 beta( k ) = b( k, k )
773*
774 60 CONTINUE
775*
776 70 CONTINUE
777*
778 work( 1 ) = sroundup_lwork(lwmin)
779 iwork( 1 ) = liwmin
780*
781 RETURN
782*
783* End of CTGSEN
784*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:133
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine classq(n, x, incx, scale, sumsq)
CLASSQ updates a sum of squares represented in scaled form.
Definition classq.f90:124
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine ctgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
CTGEXC
Definition ctgexc.f:200
subroutine ctgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info)
CTGSYL
Definition ctgsyl.f:295
Here is the call graph for this function:
Here is the caller graph for this function: