LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ztgsen()

subroutine ztgsen ( integer  ijob,
logical  wantq,
logical  wantz,
logical, dimension( * )  select,
integer  n,
complex*16, dimension( lda, * )  a,
integer  lda,
complex*16, dimension( ldb, * )  b,
integer  ldb,
complex*16, dimension( * )  alpha,
complex*16, dimension( * )  beta,
complex*16, dimension( ldq, * )  q,
integer  ldq,
complex*16, dimension( ldz, * )  z,
integer  ldz,
integer  m,
double precision  pl,
double precision  pr,
double precision, dimension( * )  dif,
complex*16, dimension( * )  work,
integer  lwork,
integer, dimension( * )  iwork,
integer  liwork,
integer  info 
)

ZTGSEN

Download ZTGSEN + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZTGSEN reorders the generalized Schur decomposition of a complex
 matrix pair (A, B) (in terms of an unitary equivalence trans-
 formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
 appears in the leading diagonal blocks of the pair (A,B). The leading
 columns of Q and Z form unitary bases of the corresponding left and
 right eigenspaces (deflating subspaces). (A, B) must be in
 generalized Schur canonical form, that is, A and B are both upper
 triangular.

 ZTGSEN also computes the generalized eigenvalues

          w(j)= ALPHA(j) / BETA(j)

 of the reordered matrix pair (A, B).

 Optionally, the routine computes estimates of reciprocal condition
 numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
 (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
 between the matrix pairs (A11, B11) and (A22,B22) that correspond to
 the selected cluster and the eigenvalues outside the cluster, resp.,
 and norms of "projections" onto left and right eigenspaces w.r.t.
 the selected cluster in the (1,1)-block.
Parameters
[in]IJOB
          IJOB is INTEGER
          Specifies whether condition numbers are required for the
          cluster of eigenvalues (PL and PR) or the deflating subspaces
          (Difu and Difl):
           =0: Only reorder w.r.t. SELECT. No extras.
           =1: Reciprocal of norms of "projections" onto left and right
               eigenspaces w.r.t. the selected cluster (PL and PR).
           =2: Upper bounds on Difu and Difl. F-norm-based estimate
               (DIF(1:2)).
           =3: Estimate of Difu and Difl. 1-norm-based estimate
               (DIF(1:2)).
               About 5 times as expensive as IJOB = 2.
           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
               version to get it all.
           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
[in]WANTQ
          WANTQ is LOGICAL
          .TRUE. : update the left transformation matrix Q;
          .FALSE.: do not update Q.
[in]WANTZ
          WANTZ is LOGICAL
          .TRUE. : update the right transformation matrix Z;
          .FALSE.: do not update Z.
[in]SELECT
          SELECT is LOGICAL array, dimension (N)
          SELECT specifies the eigenvalues in the selected cluster. To
          select an eigenvalue w(j), SELECT(j) must be set to
          .TRUE..
[in]N
          N is INTEGER
          The order of the matrices A and B. N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension(LDA,N)
          On entry, the upper triangular matrix A, in generalized
          Schur canonical form.
          On exit, A is overwritten by the reordered matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension(LDB,N)
          On entry, the upper triangular matrix B, in generalized
          Schur canonical form.
          On exit, B is overwritten by the reordered matrix B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
[out]ALPHA
          ALPHA is COMPLEX*16 array, dimension (N)
[out]BETA
          BETA is COMPLEX*16 array, dimension (N)

          The diagonal elements of A and B, respectively,
          when the pair (A,B) has been reduced to generalized Schur
          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
          eigenvalues.
[in,out]Q
          Q is COMPLEX*16 array, dimension (LDQ,N)
          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
          On exit, Q has been postmultiplied by the left unitary
          transformation matrix which reorder (A, B); The leading M
          columns of Q form orthonormal bases for the specified pair of
          left eigenspaces (deflating subspaces).
          If WANTQ = .FALSE., Q is not referenced.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= 1.
          If WANTQ = .TRUE., LDQ >= N.
[in,out]Z
          Z is COMPLEX*16 array, dimension (LDZ,N)
          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
          On exit, Z has been postmultiplied by the left unitary
          transformation matrix which reorder (A, B); The leading M
          columns of Z form orthonormal bases for the specified pair of
          left eigenspaces (deflating subspaces).
          If WANTZ = .FALSE., Z is not referenced.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z. LDZ >= 1.
          If WANTZ = .TRUE., LDZ >= N.
[out]M
          M is INTEGER
          The dimension of the specified pair of left and right
          eigenspaces, (deflating subspaces) 0 <= M <= N.
[out]PL
          PL is DOUBLE PRECISION
[out]PR
          PR is DOUBLE PRECISION

          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
          reciprocal  of the norm of "projections" onto left and right
          eigenspace with respect to the selected cluster.
          0 < PL, PR <= 1.
          If M = 0 or M = N, PL = PR  = 1.
          If IJOB = 0, 2 or 3 PL, PR are not referenced.
[out]DIF
          DIF is DOUBLE PRECISION array, dimension (2).
          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
          estimates of Difu and Difl, computed using reversed
          communication with ZLACN2.
          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
          If IJOB = 0 or 1, DIF is not referenced.
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >=  1
          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
[in]LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK. LIWORK >= 1.
          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the IWORK array,
          returns this value as the first entry of the IWORK array, and
          no error message related to LIWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
            =0: Successful exit.
            <0: If INFO = -i, the i-th argument had an illegal value.
            =1: Reordering of (A, B) failed because the transformed
                matrix pair (A, B) would be too far from generalized
                Schur form; the problem is very ill-conditioned.
                (A, B) may have been partially reordered.
                If requested, 0 is returned in DIF(*), PL and PR.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  ZTGSEN first collects the selected eigenvalues by computing unitary
  U and W that move them to the top left corner of (A, B). In other
  words, the selected eigenvalues are the eigenvalues of (A11, B11) in

              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
                              ( 0  A22),( 0  B22) n2
                                n1  n2    n1  n2

  where N = n1+n2 and U**H means the conjugate transpose of U. The first
  n1 columns of U and W span the specified pair of left and right
  eigenspaces (deflating subspaces) of (A, B).

  If (A, B) has been obtained from the generalized real Schur
  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
  reordered generalized Schur form of (C, D) is given by

           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,

  and the first n1 columns of Q*U and Z*W span the corresponding
  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).

  Note that if the selected eigenvalue is sufficiently ill-conditioned,
  then its value may differ significantly from its value before
  reordering.

  The reciprocal condition numbers of the left and right eigenspaces
  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
  be returned in DIF(1:2), corresponding to Difu and Difl, resp.

  The Difu and Difl are defined as:

       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
  and
       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],

  where sigma-min(Zu) is the smallest singular value of the
  (2*n1*n2)-by-(2*n1*n2) matrix

       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
            [ kron(In2, B11)  -kron(B22**H, In1) ].

  Here, Inx is the identity matrix of size nx and A22**H is the
  conjugate transpose of A22. kron(X, Y) is the Kronecker product between
  the matrices X and Y.

  When DIF(2) is small, small changes in (A, B) can cause large changes
  in the deflating subspace. An approximate (asymptotic) bound on the
  maximum angular error in the computed deflating subspaces is

       EPS * norm((A, B)) / DIF(2),

  where EPS is the machine precision.

  The reciprocal norm of the projectors on the left and right
  eigenspaces associated with (A11, B11) may be returned in PL and PR.
  They are computed as follows. First we compute L and R so that
  P*(A, B)*Q is block diagonal, where

       P = ( I -L ) n1           Q = ( I R ) n1
           ( 0  I ) n2    and        ( 0 I ) n2
             n1 n2                    n1 n2

  and (L, R) is the solution to the generalized Sylvester equation

       A11*R - L*A22 = -A12
       B11*R - L*B22 = -B12

  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
  An approximate (asymptotic) bound on the average absolute error of
  the selected eigenvalues is

       EPS * norm((A, B)) / PL.

  There are also global error bounds which valid for perturbations up
  to a certain restriction:  A lower bound (x) on the smallest
  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
  (i.e. (A + E, B + F), is

   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).

  An approximate bound on x can be computed from DIF(1:2), PL and PR.

  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
  (L', R') and unperturbed (L, R) left and right deflating subspaces
  associated with the selected cluster in the (1,1)-blocks can be
  bounded as

   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))

  See LAPACK User's Guide section 4.11 or the following references
  for more information.

  Note that if the default method for computing the Frobenius-norm-
  based estimate DIF is not wanted (see ZLATDF), then the parameter
  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
  (IJOB = 2 will be used)). See ZTGSYL for more details.
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

Definition at line 430 of file ztgsen.f.

433*
434* -- LAPACK computational routine --
435* -- LAPACK is a software package provided by Univ. of Tennessee, --
436* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
437*
438* .. Scalar Arguments ..
439 LOGICAL WANTQ, WANTZ
440 INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
441 $ M, N
442 DOUBLE PRECISION PL, PR
443* ..
444* .. Array Arguments ..
445 LOGICAL SELECT( * )
446 INTEGER IWORK( * )
447 DOUBLE PRECISION DIF( * )
448 COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
449 $ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
450* ..
451*
452* =====================================================================
453*
454* .. Parameters ..
455 INTEGER IDIFJB
456 parameter( idifjb = 3 )
457 DOUBLE PRECISION ZERO, ONE
458 parameter( zero = 0.0d+0, one = 1.0d+0 )
459* ..
460* .. Local Scalars ..
461 LOGICAL LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
462 INTEGER I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
463 $ N1, N2
464 DOUBLE PRECISION DSCALE, DSUM, RDSCAL, SAFMIN
465 COMPLEX*16 TEMP1, TEMP2
466* ..
467* .. Local Arrays ..
468 INTEGER ISAVE( 3 )
469* ..
470* .. External Subroutines ..
471 EXTERNAL xerbla, zlacn2, zlacpy, zlassq, zscal, ztgexc,
472 $ ztgsyl
473* ..
474* .. Intrinsic Functions ..
475 INTRINSIC abs, dcmplx, dconjg, max, sqrt
476* ..
477* .. External Functions ..
478 DOUBLE PRECISION DLAMCH
479 EXTERNAL dlamch
480* ..
481* .. Executable Statements ..
482*
483* Decode and test the input parameters
484*
485 info = 0
486 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
487*
488 IF( ijob.LT.0 .OR. ijob.GT.5 ) THEN
489 info = -1
490 ELSE IF( n.LT.0 ) THEN
491 info = -5
492 ELSE IF( lda.LT.max( 1, n ) ) THEN
493 info = -7
494 ELSE IF( ldb.LT.max( 1, n ) ) THEN
495 info = -9
496 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
497 info = -13
498 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
499 info = -15
500 END IF
501*
502 IF( info.NE.0 ) THEN
503 CALL xerbla( 'ZTGSEN', -info )
504 RETURN
505 END IF
506*
507 ierr = 0
508*
509 wantp = ijob.EQ.1 .OR. ijob.GE.4
510 wantd1 = ijob.EQ.2 .OR. ijob.EQ.4
511 wantd2 = ijob.EQ.3 .OR. ijob.EQ.5
512 wantd = wantd1 .OR. wantd2
513*
514* Set M to the dimension of the specified pair of deflating
515* subspaces.
516*
517 m = 0
518 IF( .NOT.lquery .OR. ijob.NE.0 ) THEN
519 DO 10 k = 1, n
520 alpha( k ) = a( k, k )
521 beta( k ) = b( k, k )
522 IF( k.LT.n ) THEN
523 IF( SELECT( k ) )
524 $ m = m + 1
525 ELSE
526 IF( SELECT( n ) )
527 $ m = m + 1
528 END IF
529 10 CONTINUE
530 END IF
531*
532 IF( ijob.EQ.1 .OR. ijob.EQ.2 .OR. ijob.EQ.4 ) THEN
533 lwmin = max( 1, 2*m*( n-m ) )
534 liwmin = max( 1, n+2 )
535 ELSE IF( ijob.EQ.3 .OR. ijob.EQ.5 ) THEN
536 lwmin = max( 1, 4*m*( n-m ) )
537 liwmin = max( 1, 2*m*( n-m ), n+2 )
538 ELSE
539 lwmin = 1
540 liwmin = 1
541 END IF
542*
543 work( 1 ) = lwmin
544 iwork( 1 ) = liwmin
545*
546 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
547 info = -21
548 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
549 info = -23
550 END IF
551*
552 IF( info.NE.0 ) THEN
553 CALL xerbla( 'ZTGSEN', -info )
554 RETURN
555 ELSE IF( lquery ) THEN
556 RETURN
557 END IF
558*
559* Quick return if possible.
560*
561 IF( m.EQ.n .OR. m.EQ.0 ) THEN
562 IF( wantp ) THEN
563 pl = one
564 pr = one
565 END IF
566 IF( wantd ) THEN
567 dscale = zero
568 dsum = one
569 DO 20 i = 1, n
570 CALL zlassq( n, a( 1, i ), 1, dscale, dsum )
571 CALL zlassq( n, b( 1, i ), 1, dscale, dsum )
572 20 CONTINUE
573 dif( 1 ) = dscale*sqrt( dsum )
574 dif( 2 ) = dif( 1 )
575 END IF
576 GO TO 70
577 END IF
578*
579* Get machine constant
580*
581 safmin = dlamch( 'S' )
582*
583* Collect the selected blocks at the top-left corner of (A, B).
584*
585 ks = 0
586 DO 30 k = 1, n
587 swap = SELECT( k )
588 IF( swap ) THEN
589 ks = ks + 1
590*
591* Swap the K-th block to position KS. Compute unitary Q
592* and Z that will swap adjacent diagonal blocks in (A, B).
593*
594 IF( k.NE.ks )
595 $ CALL ztgexc( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
596 $ ldz, k, ks, ierr )
597*
598 IF( ierr.GT.0 ) THEN
599*
600* Swap is rejected: exit.
601*
602 info = 1
603 IF( wantp ) THEN
604 pl = zero
605 pr = zero
606 END IF
607 IF( wantd ) THEN
608 dif( 1 ) = zero
609 dif( 2 ) = zero
610 END IF
611 GO TO 70
612 END IF
613 END IF
614 30 CONTINUE
615 IF( wantp ) THEN
616*
617* Solve generalized Sylvester equation for R and L:
618* A11 * R - L * A22 = A12
619* B11 * R - L * B22 = B12
620*
621 n1 = m
622 n2 = n - m
623 i = n1 + 1
624 CALL zlacpy( 'Full', n1, n2, a( 1, i ), lda, work, n1 )
625 CALL zlacpy( 'Full', n1, n2, b( 1, i ), ldb, work( n1*n2+1 ),
626 $ n1 )
627 ijb = 0
628 CALL ztgsyl( 'N', ijb, n1, n2, a, lda, a( i, i ), lda, work,
629 $ n1, b, ldb, b( i, i ), ldb, work( n1*n2+1 ), n1,
630 $ dscale, dif( 1 ), work( n1*n2*2+1 ),
631 $ lwork-2*n1*n2, iwork, ierr )
632*
633* Estimate the reciprocal of norms of "projections" onto
634* left and right eigenspaces
635*
636 rdscal = zero
637 dsum = one
638 CALL zlassq( n1*n2, work, 1, rdscal, dsum )
639 pl = rdscal*sqrt( dsum )
640 IF( pl.EQ.zero ) THEN
641 pl = one
642 ELSE
643 pl = dscale / ( sqrt( dscale*dscale / pl+pl )*sqrt( pl ) )
644 END IF
645 rdscal = zero
646 dsum = one
647 CALL zlassq( n1*n2, work( n1*n2+1 ), 1, rdscal, dsum )
648 pr = rdscal*sqrt( dsum )
649 IF( pr.EQ.zero ) THEN
650 pr = one
651 ELSE
652 pr = dscale / ( sqrt( dscale*dscale / pr+pr )*sqrt( pr ) )
653 END IF
654 END IF
655 IF( wantd ) THEN
656*
657* Compute estimates Difu and Difl.
658*
659 IF( wantd1 ) THEN
660 n1 = m
661 n2 = n - m
662 i = n1 + 1
663 ijb = idifjb
664*
665* Frobenius norm-based Difu estimate.
666*
667 CALL ztgsyl( 'N', ijb, n1, n2, a, lda, a( i, i ), lda, work,
668 $ n1, b, ldb, b( i, i ), ldb, work( n1*n2+1 ),
669 $ n1, dscale, dif( 1 ), work( n1*n2*2+1 ),
670 $ lwork-2*n1*n2, iwork, ierr )
671*
672* Frobenius norm-based Difl estimate.
673*
674 CALL ztgsyl( 'N', ijb, n2, n1, a( i, i ), lda, a, lda, work,
675 $ n2, b( i, i ), ldb, b, ldb, work( n1*n2+1 ),
676 $ n2, dscale, dif( 2 ), work( n1*n2*2+1 ),
677 $ lwork-2*n1*n2, iwork, ierr )
678 ELSE
679*
680* Compute 1-norm-based estimates of Difu and Difl using
681* reversed communication with ZLACN2. In each step a
682* generalized Sylvester equation or a transposed variant
683* is solved.
684*
685 kase = 0
686 n1 = m
687 n2 = n - m
688 i = n1 + 1
689 ijb = 0
690 mn2 = 2*n1*n2
691*
692* 1-norm-based estimate of Difu.
693*
694 40 CONTINUE
695 CALL zlacn2( mn2, work( mn2+1 ), work, dif( 1 ), kase,
696 $ isave )
697 IF( kase.NE.0 ) THEN
698 IF( kase.EQ.1 ) THEN
699*
700* Solve generalized Sylvester equation
701*
702 CALL ztgsyl( 'N', ijb, n1, n2, a, lda, a( i, i ), lda,
703 $ work, n1, b, ldb, b( i, i ), ldb,
704 $ work( n1*n2+1 ), n1, dscale, dif( 1 ),
705 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
706 $ ierr )
707 ELSE
708*
709* Solve the transposed variant.
710*
711 CALL ztgsyl( 'C', ijb, n1, n2, a, lda, a( i, i ), lda,
712 $ work, n1, b, ldb, b( i, i ), ldb,
713 $ work( n1*n2+1 ), n1, dscale, dif( 1 ),
714 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
715 $ ierr )
716 END IF
717 GO TO 40
718 END IF
719 dif( 1 ) = dscale / dif( 1 )
720*
721* 1-norm-based estimate of Difl.
722*
723 50 CONTINUE
724 CALL zlacn2( mn2, work( mn2+1 ), work, dif( 2 ), kase,
725 $ isave )
726 IF( kase.NE.0 ) THEN
727 IF( kase.EQ.1 ) THEN
728*
729* Solve generalized Sylvester equation
730*
731 CALL ztgsyl( 'N', ijb, n2, n1, a( i, i ), lda, a, lda,
732 $ work, n2, b( i, i ), ldb, b, ldb,
733 $ work( n1*n2+1 ), n2, dscale, dif( 2 ),
734 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
735 $ ierr )
736 ELSE
737*
738* Solve the transposed variant.
739*
740 CALL ztgsyl( 'C', ijb, n2, n1, a( i, i ), lda, a, lda,
741 $ work, n2, b, ldb, b( i, i ), ldb,
742 $ work( n1*n2+1 ), n2, dscale, dif( 2 ),
743 $ work( n1*n2*2+1 ), lwork-2*n1*n2, iwork,
744 $ ierr )
745 END IF
746 GO TO 50
747 END IF
748 dif( 2 ) = dscale / dif( 2 )
749 END IF
750 END IF
751*
752* If B(K,K) is complex, make it real and positive (normalization
753* of the generalized Schur form) and Store the generalized
754* eigenvalues of reordered pair (A, B)
755*
756 DO 60 k = 1, n
757 dscale = abs( b( k, k ) )
758 IF( dscale.GT.safmin ) THEN
759 temp1 = dconjg( b( k, k ) / dscale )
760 temp2 = b( k, k ) / dscale
761 b( k, k ) = dscale
762 CALL zscal( n-k, temp1, b( k, k+1 ), ldb )
763 CALL zscal( n-k+1, temp1, a( k, k ), lda )
764 IF( wantq )
765 $ CALL zscal( n, temp2, q( 1, k ), 1 )
766 ELSE
767 b( k, k ) = dcmplx( zero, zero )
768 END IF
769*
770 alpha( k ) = a( k, k )
771 beta( k ) = b( k, k )
772*
773 60 CONTINUE
774*
775 70 CONTINUE
776*
777 work( 1 ) = lwmin
778 iwork( 1 ) = liwmin
779*
780 RETURN
781*
782* End of ZTGSEN
783*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition zlacn2.f:133
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:124
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
subroutine ztgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
ZTGEXC
Definition ztgexc.f:200
subroutine ztgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info)
ZTGSYL
Definition ztgsyl.f:295
Here is the call graph for this function:
Here is the caller graph for this function: