LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sla_porfsx_extended()

subroutine sla_porfsx_extended ( integer prec_type,
character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldaf, * ) af,
integer ldaf,
logical colequ,
real, dimension( * ) c,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldy, * ) y,
integer ldy,
real, dimension( * ) berr_out,
integer n_norms,
real, dimension( nrhs, * ) err_bnds_norm,
real, dimension( nrhs, * ) err_bnds_comp,
real, dimension( * ) res,
real, dimension(*) ayb,
real, dimension( * ) dy,
real, dimension( * ) y_tail,
real rcond,
integer ithresh,
real rthresh,
real dz_ub,
logical ignore_cwise,
integer info )

SLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Download SLA_PORFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SLA_PORFSX_EXTENDED improves the computed solution to a system of
!> linear equations by performing extra-precise iterative refinement
!> and provides error bounds and backward error estimates for the solution.
!> This subroutine is called by SPORFSX to perform iterative refinement.
!> In addition to normwise error bound, the code provides maximum
!> componentwise error bound if possible. See comments for ERR_BNDS_NORM
!> and ERR_BNDS_COMP for details of the error bounds. Note that this
!> subroutine is only responsible for setting the second fields of
!> ERR_BNDS_NORM and ERR_BNDS_COMP.
!> 
Parameters
[in]PREC_TYPE
!>          PREC_TYPE is INTEGER
!>     Specifies the intermediate precision to be used in refinement.
!>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
!>          = 'S':  Single
!>          = 'D':  Double
!>          = 'I':  Indigenous
!>          = 'X' or 'E':  Extra
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>       = 'U':  Upper triangle of A is stored;
!>       = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right-hand-sides, i.e., the number of columns of the
!>     matrix B.
!> 
[in]A
!>          A is REAL array, dimension (LDA,N)
!>     On entry, the N-by-N matrix A.
!> 
[in]LDA
!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]AF
!>          AF is REAL array, dimension (LDAF,N)
!>     The triangular factor U or L from the Cholesky factorization
!>     A = U**T*U or A = L*L**T, as computed by SPOTRF.
!> 
[in]LDAF
!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in]COLEQU
!>          COLEQU is LOGICAL
!>     If .TRUE. then column equilibration was done to A before calling
!>     this routine. This is needed to compute the solution and error
!>     bounds correctly.
!> 
[in]C
!>          C is REAL array, dimension (N)
!>     The column scale factors for A. If COLEQU = .FALSE., C
!>     is not accessed. If C is input, each element of C should be a power
!>     of the radix to ensure a reliable solution and error estimates.
!>     Scaling by powers of the radix does not cause rounding errors unless
!>     the result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in]B
!>          B is REAL array, dimension (LDB,NRHS)
!>     The right-hand-side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in,out]Y
!>          Y is REAL array, dimension (LDY,NRHS)
!>     On entry, the solution matrix X, as computed by SPOTRS.
!>     On exit, the improved solution matrix Y.
!> 
[in]LDY
!>          LDY is INTEGER
!>     The leading dimension of the array Y.  LDY >= max(1,N).
!> 
[out]BERR_OUT
!>          BERR_OUT is REAL array, dimension (NRHS)
!>     On exit, BERR_OUT(j) contains the componentwise relative backward
!>     error for right-hand-side j from the formula
!>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
!>     where abs(Z) is the componentwise absolute value of the matrix
!>     or vector Z. This is computed by SLA_LIN_BERR.
!> 
[in]N_NORMS
!>          N_NORMS is INTEGER
!>     Determines which error bounds to return (see ERR_BNDS_NORM
!>     and ERR_BNDS_COMP).
!>     If N_NORMS >= 1 return normwise error bounds.
!>     If N_NORMS >= 2 return componentwise error bounds.
!> 
[in,out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     This subroutine is only responsible for setting the second field
!>     above.
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in,out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     This subroutine is only responsible for setting the second field
!>     above.
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]RES
!>          RES is REAL array, dimension (N)
!>     Workspace to hold the intermediate residual.
!> 
[in]AYB
!>          AYB is REAL array, dimension (N)
!>     Workspace. This can be the same workspace passed for Y_TAIL.
!> 
[in]DY
!>          DY is REAL array, dimension (N)
!>     Workspace to hold the intermediate solution.
!> 
[in]Y_TAIL
!>          Y_TAIL is REAL array, dimension (N)
!>     Workspace to hold the trailing bits of the intermediate solution.
!> 
[in]RCOND
!>          RCOND is REAL
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[in]ITHRESH
!>          ITHRESH is INTEGER
!>     The maximum number of residual computations allowed for
!>     refinement. The default is 10. For 'aggressive' set to 100 to
!>     permit convergence using approximate factorizations or
!>     factorizations other than LU. If the factorization uses a
!>     technique other than Gaussian elimination, the guarantees in
!>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
!> 
[in]RTHRESH
!>          RTHRESH is REAL
!>     Determines when to stop refinement if the error estimate stops
!>     decreasing. Refinement will stop when the next solution no longer
!>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
!>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
!>     default value is 0.5. For 'aggressive' set to 0.9 to permit
!>     convergence on extremely ill-conditioned matrices. See LAWN 165
!>     for more details.
!> 
[in]DZ_UB
!>          DZ_UB is REAL
!>     Determines when to start considering componentwise convergence.
!>     Componentwise convergence is only considered after each component
!>     of the solution Y is stable, which we define as the relative
!>     change in each component being less than DZ_UB. The default value
!>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
!>     more details.
!> 
[in]IGNORE_CWISE
!>          IGNORE_CWISE is LOGICAL
!>     If .TRUE. then ignore componentwise convergence. Default value
!>     is .FALSE..
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit.
!>       < 0:  if INFO = -i, the ith argument to SPOTRS had an illegal
!>             value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 378 of file sla_porfsx_extended.f.

386*
387* -- LAPACK computational routine --
388* -- LAPACK is a software package provided by Univ. of Tennessee, --
389* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
390*
391* .. Scalar Arguments ..
392 INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
393 $ N_NORMS, ITHRESH
394 CHARACTER UPLO
395 LOGICAL COLEQU, IGNORE_CWISE
396 REAL RTHRESH, DZ_UB
397* ..
398* .. Array Arguments ..
399 REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
400 $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
401 REAL C( * ), AYB(*), RCOND, BERR_OUT( * ),
402 $ ERR_BNDS_NORM( NRHS, * ),
403 $ ERR_BNDS_COMP( NRHS, * )
404* ..
405*
406* =====================================================================
407*
408* .. Local Scalars ..
409 INTEGER UPLO2, CNT, I, J, X_STATE, Z_STATE
410 REAL YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
411 $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
412 $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
413 $ EPS, HUGEVAL, INCR_THRESH
414 LOGICAL INCR_PREC
415* ..
416* .. Parameters ..
417 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
418 $ NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
419 $ EXTRA_RESIDUAL, EXTRA_Y
420 parameter( unstable_state = 0, working_state = 1,
421 $ conv_state = 2, noprog_state = 3 )
422 parameter( base_residual = 0, extra_residual = 1,
423 $ extra_y = 2 )
424 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
425 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
426 INTEGER CMP_ERR_I, PIV_GROWTH_I
427 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
428 $ berr_i = 3 )
429 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
430 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
431 $ piv_growth_i = 9 )
432 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
433 $ LA_LINRX_CWISE_I
434 parameter( la_linrx_itref_i = 1,
435 $ la_linrx_ithresh_i = 2 )
436 parameter( la_linrx_cwise_i = 3 )
437 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
438 $ LA_LINRX_RCOND_I
439 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
440 parameter( la_linrx_rcond_i = 3 )
441* ..
442* .. External Functions ..
443 LOGICAL LSAME
444 EXTERNAL ilauplo
445 INTEGER ILAUPLO
446* ..
447* .. External Subroutines ..
448 EXTERNAL saxpy, scopy, spotrs, ssymv,
449 $ blas_ssymv_x,
450 $ blas_ssymv2_x, sla_syamv, sla_wwaddw,
452 REAL SLAMCH
453* ..
454* .. Intrinsic Functions ..
455 INTRINSIC abs, max, min
456* ..
457* .. Executable Statements ..
458*
459 IF (info.NE.0) RETURN
460 eps = slamch( 'Epsilon' )
461 hugeval = slamch( 'Overflow' )
462* Force HUGEVAL to Inf
463 hugeval = hugeval * hugeval
464* Using HUGEVAL may lead to spurious underflows.
465 incr_thresh = real( n ) * eps
466
467 IF ( lsame( uplo, 'L' ) ) THEN
468 uplo2 = ilauplo( 'L' )
469 ELSE
470 uplo2 = ilauplo( 'U' )
471 ENDIF
472
473 DO j = 1, nrhs
474 y_prec_state = extra_residual
475 IF ( y_prec_state .EQ. extra_y ) THEN
476 DO i = 1, n
477 y_tail( i ) = 0.0
478 END DO
479 END IF
480
481 dxrat = 0.0
482 dxratmax = 0.0
483 dzrat = 0.0
484 dzratmax = 0.0
485 final_dx_x = hugeval
486 final_dz_z = hugeval
487 prevnormdx = hugeval
488 prev_dz_z = hugeval
489 dz_z = hugeval
490 dx_x = hugeval
491
492 x_state = working_state
493 z_state = unstable_state
494 incr_prec = .false.
495
496 DO cnt = 1, ithresh
497*
498* Compute residual RES = B_s - op(A_s) * Y,
499* op(A) = A, A**T, or A**H depending on TRANS (and type).
500*
501 CALL scopy( n, b( 1, j ), 1, res, 1 )
502 IF ( y_prec_state .EQ. base_residual ) THEN
503 CALL ssymv( uplo, n, -1.0, a, lda, y(1,j), 1,
504 $ 1.0, res, 1 )
505 ELSE IF ( y_prec_state .EQ. extra_residual ) THEN
506 CALL blas_ssymv_x( uplo2, n, -1.0, a, lda,
507 $ y( 1, j ), 1, 1.0, res, 1, prec_type )
508 ELSE
509 CALL blas_ssymv2_x(uplo2, n, -1.0, a, lda,
510 $ y(1, j), y_tail, 1, 1.0, res, 1, prec_type)
511 END IF
512
513! XXX: RES is no longer needed.
514 CALL scopy( n, res, 1, dy, 1 )
515 CALL spotrs( uplo, n, 1, af, ldaf, dy, n, info )
516*
517* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
518*
519 normx = 0.0
520 normy = 0.0
521 normdx = 0.0
522 dz_z = 0.0
523 ymin = hugeval
524
525 DO i = 1, n
526 yk = abs( y( i, j ) )
527 dyk = abs( dy( i ) )
528
529 IF ( yk .NE. 0.0 ) THEN
530 dz_z = max( dz_z, dyk / yk )
531 ELSE IF ( dyk .NE. 0.0 ) THEN
532 dz_z = hugeval
533 END IF
534
535 ymin = min( ymin, yk )
536
537 normy = max( normy, yk )
538
539 IF ( colequ ) THEN
540 normx = max( normx, yk * c( i ) )
541 normdx = max( normdx, dyk * c( i ) )
542 ELSE
543 normx = normy
544 normdx = max( normdx, dyk )
545 END IF
546 END DO
547
548 IF ( normx .NE. 0.0 ) THEN
549 dx_x = normdx / normx
550 ELSE IF ( normdx .EQ. 0.0 ) THEN
551 dx_x = 0.0
552 ELSE
553 dx_x = hugeval
554 END IF
555
556 dxrat = normdx / prevnormdx
557 dzrat = dz_z / prev_dz_z
558*
559* Check termination criteria.
560*
561 IF ( ymin*rcond .LT. incr_thresh*normy
562 $ .AND. y_prec_state .LT. extra_y )
563 $ incr_prec = .true.
564
565 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
566 $ x_state = working_state
567 IF ( x_state .EQ. working_state ) THEN
568 IF ( dx_x .LE. eps ) THEN
569 x_state = conv_state
570 ELSE IF ( dxrat .GT. rthresh ) THEN
571 IF ( y_prec_state .NE. extra_y ) THEN
572 incr_prec = .true.
573 ELSE
574 x_state = noprog_state
575 END IF
576 ELSE
577 IF ( dxrat .GT. dxratmax ) dxratmax = dxrat
578 END IF
579 IF ( x_state .GT. working_state ) final_dx_x = dx_x
580 END IF
581
582 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
583 $ z_state = working_state
584 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
585 $ z_state = working_state
586 IF ( z_state .EQ. working_state ) THEN
587 IF ( dz_z .LE. eps ) THEN
588 z_state = conv_state
589 ELSE IF ( dz_z .GT. dz_ub ) THEN
590 z_state = unstable_state
591 dzratmax = 0.0
592 final_dz_z = hugeval
593 ELSE IF ( dzrat .GT. rthresh ) THEN
594 IF ( y_prec_state .NE. extra_y ) THEN
595 incr_prec = .true.
596 ELSE
597 z_state = noprog_state
598 END IF
599 ELSE
600 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
601 END IF
602 IF ( z_state .GT. working_state ) final_dz_z = dz_z
603 END IF
604
605 IF ( x_state.NE.working_state.AND.
606 $ ( ignore_cwise.OR.z_state.NE.working_state ) )
607 $ GOTO 666
608
609 IF ( incr_prec ) THEN
610 incr_prec = .false.
611 y_prec_state = y_prec_state + 1
612 DO i = 1, n
613 y_tail( i ) = 0.0
614 END DO
615 END IF
616
617 prevnormdx = normdx
618 prev_dz_z = dz_z
619*
620* Update solution.
621*
622 IF (y_prec_state .LT. extra_y) THEN
623 CALL saxpy( n, 1.0, dy, 1, y(1,j), 1 )
624 ELSE
625 CALL sla_wwaddw( n, y( 1, j ), y_tail, dy )
626 END IF
627
628 END DO
629* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
630 666 CONTINUE
631*
632* Set final_* when cnt hits ithresh.
633*
634 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
635 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
636*
637* Compute error bounds.
638*
639 IF ( n_norms .GE. 1 ) THEN
640 err_bnds_norm( j, la_linrx_err_i ) =
641 $ final_dx_x / (1 - dxratmax)
642 END IF
643 IF ( n_norms .GE. 2 ) THEN
644 err_bnds_comp( j, la_linrx_err_i ) =
645 $ final_dz_z / (1 - dzratmax)
646 END IF
647*
648* Compute componentwise relative backward error from formula
649* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
650* where abs(Z) is the componentwise absolute value of the matrix
651* or vector Z.
652*
653* Compute residual RES = B_s - op(A_s) * Y,
654* op(A) = A, A**T, or A**H depending on TRANS (and type).
655*
656 CALL scopy( n, b( 1, j ), 1, res, 1 )
657 CALL ssymv( uplo, n, -1.0, a, lda, y(1,j), 1, 1.0, res, 1 )
658
659 DO i = 1, n
660 ayb( i ) = abs( b( i, j ) )
661 END DO
662*
663* Compute abs(op(A_s))*abs(Y) + abs(B_s).
664*
665 CALL sla_syamv( uplo2, n, 1.0,
666 $ a, lda, y(1, j), 1, 1.0, ayb, 1 )
667
668 CALL sla_lin_berr( n, n, 1, res, ayb, berr_out( j ) )
669*
670* End of loop for each RHS.
671*
672 END DO
673*
674 RETURN
675*
676* End of SLA_PORFSX_EXTENDED
677*
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
SSYMV
Definition ssymv.f:152
integer function ilauplo(uplo)
ILAUPLO
Definition ilauplo.f:56
subroutine sla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
SLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bou...
Definition sla_syamv.f:175
subroutine sla_lin_berr(n, nz, nrhs, res, ayb, berr)
SLA_LIN_BERR computes a component-wise relative backward error.
subroutine sla_wwaddw(n, x, y, w)
SLA_WWADDW adds a vector into a doubled-single vector.
Definition sla_wwaddw.f:79
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine spotrs(uplo, n, nrhs, a, lda, b, ldb, info)
SPOTRS
Definition spotrs.f:108
Here is the call graph for this function:
Here is the caller graph for this function: