LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zhetrs_aa_2stage()

subroutine zhetrs_aa_2stage ( character uplo,
integer n,
integer nrhs,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tb,
integer ltb,
integer, dimension( * ) ipiv,
integer, dimension( * ) ipiv2,
complex*16, dimension( ldb, * ) b,
integer ldb,
integer info )

ZHETRS_AA_2STAGE

Download ZHETRS_AA_2STAGE + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZHETRS_AA_2STAGE solves a system of linear equations A*X = B with a 
!> hermitian matrix A using the factorization A = U**H*T*U or
!> A = L*T*L**H computed by ZHETRF_AA_2STAGE.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the details of the factorization are stored
!>          as an upper or lower triangular matrix.
!>          = 'U':  Upper triangular, form is A = U**H*T*U;
!>          = 'L':  Lower triangular, form is A = L*T*L**H.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          Details of factors computed by ZHETRF_AA_2STAGE.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]TB
!>          TB is COMPLEX*16 array, dimension (LTB)
!>          Details of factors computed by ZHETRF_AA_2STAGE.
!> 
[in]LTB
!>          LTB is INTEGER
!>          The size of the array TB. LTB >= 4*N.
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges as computed by
!>          ZHETRF_AA_2STAGE.
!> 
[in]IPIV2
!>          IPIV2 is INTEGER array, dimension (N)
!>          Details of the interchanges as computed by
!>          ZHETRF_AA_2STAGE.
!> 
[in,out]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, the solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 137 of file zhetrs_aa_2stage.f.

139*
140* -- LAPACK computational routine --
141* -- LAPACK is a software package provided by Univ. of Tennessee, --
142* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
143*
144 IMPLICIT NONE
145*
146* .. Scalar Arguments ..
147 CHARACTER UPLO
148 INTEGER N, NRHS, LDA, LTB, LDB, INFO
149* ..
150* .. Array Arguments ..
151 INTEGER IPIV( * ), IPIV2( * )
152 COMPLEX*16 A( LDA, * ), TB( * ), B( LDB, * )
153* ..
154*
155* =====================================================================
156*
157 COMPLEX*16 ONE
158 parameter( one = ( 1.0d+0, 0.0d+0 ) )
159* ..
160* .. Local Scalars ..
161 INTEGER LDTB, NB
162 LOGICAL UPPER
163* ..
164* .. External Functions ..
165 LOGICAL LSAME
166 EXTERNAL lsame
167* ..
168* .. External Subroutines ..
169 EXTERNAL zgbtrs, zlaswp, ztrsm, xerbla
170* ..
171* .. Intrinsic Functions ..
172 INTRINSIC max
173* ..
174* .. Executable Statements ..
175*
176 info = 0
177 upper = lsame( uplo, 'U' )
178 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
179 info = -1
180 ELSE IF( n.LT.0 ) THEN
181 info = -2
182 ELSE IF( nrhs.LT.0 ) THEN
183 info = -3
184 ELSE IF( lda.LT.max( 1, n ) ) THEN
185 info = -5
186 ELSE IF( ltb.LT.( 4*n ) ) THEN
187 info = -7
188 ELSE IF( ldb.LT.max( 1, n ) ) THEN
189 info = -11
190 END IF
191 IF( info.NE.0 ) THEN
192 CALL xerbla( 'ZHETRS_AA_2STAGE', -info )
193 RETURN
194 END IF
195*
196* Quick return if possible
197*
198 IF( n.EQ.0 .OR. nrhs.EQ.0 )
199 $ RETURN
200*
201* Read NB and compute LDTB
202*
203 nb = int( tb( 1 ) )
204 ldtb = ltb/n
205*
206 IF( upper ) THEN
207*
208* Solve A*X = B, where A = U**H*T*U.
209*
210 IF( n.GT.nb ) THEN
211*
212* Pivot, P**T * B -> B
213*
214 CALL zlaswp( nrhs, b, ldb, nb+1, n, ipiv, 1 )
215*
216* Compute (U**H \ B) -> B [ (U**H \P**T * B) ]
217*
218 CALL ztrsm( 'L', 'U', 'C', 'U', n-nb, nrhs, one, a(1,
219 $ nb+1),
220 $ lda, b(nb+1, 1), ldb)
221*
222 END IF
223*
224* Compute T \ B -> B [ T \ (U**H \P**T * B) ]
225*
226 CALL zgbtrs( 'N', n, nb, nb, nrhs, tb, ldtb, ipiv2, b, ldb,
227 $ info)
228 IF( n.GT.nb ) THEN
229*
230* Compute (U \ B) -> B [ U \ (T \ (U**H \P**T * B) ) ]
231*
232 CALL ztrsm( 'L', 'U', 'N', 'U', n-nb, nrhs, one, a(1,
233 $ nb+1),
234 $ lda, b(nb+1, 1), ldb)
235*
236* Pivot, P * B -> B [ P * (U \ (T \ (U**H \P**T * B) )) ]
237*
238 CALL zlaswp( nrhs, b, ldb, nb+1, n, ipiv, -1 )
239*
240 END IF
241*
242 ELSE
243*
244* Solve A*X = B, where A = L*T*L**H.
245*
246 IF( n.GT.nb ) THEN
247*
248* Pivot, P**T * B -> B
249*
250 CALL zlaswp( nrhs, b, ldb, nb+1, n, ipiv, 1 )
251*
252* Compute (L \ B) -> B [ (L \P**T * B) ]
253*
254 CALL ztrsm( 'L', 'L', 'N', 'U', n-nb, nrhs, one, a(nb+1,
255 $ 1),
256 $ lda, b(nb+1, 1), ldb)
257*
258 END IF
259*
260* Compute T \ B -> B [ T \ (L \P**T * B) ]
261*
262 CALL zgbtrs( 'N', n, nb, nb, nrhs, tb, ldtb, ipiv2, b, ldb,
263 $ info)
264 IF( n.GT.nb ) THEN
265*
266* Compute (L**H \ B) -> B [ L**H \ (T \ (L \P**T * B) ) ]
267*
268 CALL ztrsm( 'L', 'L', 'C', 'U', n-nb, nrhs, one, a(nb+1,
269 $ 1),
270 $ lda, b(nb+1, 1), ldb)
271*
272* Pivot, P * B -> B [ P * (L**H \ (T \ (L \P**T * B) )) ]
273*
274 CALL zlaswp( nrhs, b, ldb, nb+1, n, ipiv, -1 )
275*
276 END IF
277 END IF
278*
279 RETURN
280*
281* End of ZHETRS_AA_2STAGE
282*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
ZGBTRS
Definition zgbtrs.f:137
subroutine zlaswp(n, a, lda, k1, k2, ipiv, incx)
ZLASWP performs a series of row interchanges on a general rectangular matrix.
Definition zlaswp.f:113
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRSM
Definition ztrsm.f:180
Here is the call graph for this function:
Here is the caller graph for this function: