LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssytri_3x()

subroutine ssytri_3x ( character  uplo,
integer  n,
real, dimension( lda, * )  a,
integer  lda,
real, dimension( * )  e,
integer, dimension( * )  ipiv,
real, dimension( n+nb+1, * )  work,
integer  nb,
integer  info 
)

SSYTRI_3X

Download SSYTRI_3X + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SSYTRI_3X computes the inverse of a real symmetric indefinite
 matrix A using the factorization computed by SSYTRF_RK or SSYTRF_BK:

     A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),

 where U (or L) is unit upper (or lower) triangular matrix,
 U**T (or L**T) is the transpose of U (or L), P is a permutation
 matrix, P**T is the transpose of P, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level 3 BLAS.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are
          stored as an upper or lower triangular matrix.
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, diagonal of the block diagonal matrix D and
          factors U or L as computed by SYTRF_RK and SSYTRF_BK:
            a) ONLY diagonal elements of the symmetric block diagonal
               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
               (superdiagonal (or subdiagonal) elements of D
                should be provided on entry in array E), and
            b) If UPLO = 'U': factor U in the superdiagonal part of A.
               If UPLO = 'L': factor L in the subdiagonal part of A.

          On exit, if INFO = 0, the symmetric inverse of the original
          matrix.
             If UPLO = 'U': the upper triangular part of the inverse
             is formed and the part of A below the diagonal is not
             referenced;
             If UPLO = 'L': the lower triangular part of the inverse
             is formed and the part of A above the diagonal is not
             referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]E
          E is REAL array, dimension (N)
          On entry, contains the superdiagonal (or subdiagonal)
          elements of the symmetric block diagonal matrix D
          with 1-by-1 or 2-by-2 diagonal blocks, where
          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.

          NOTE: For 1-by-1 diagonal block D(k), where
          1 <= k <= N, the element E(k) is not referenced in both
          UPLO = 'U' or UPLO = 'L' cases.
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by SSYTRF_RK or SSYTRF_BK.
[out]WORK
          WORK is REAL array, dimension (N+NB+1,NB+3).
[in]NB
          NB is INTEGER
          Block size.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
  June 2017,  Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

Definition at line 158 of file ssytri_3x.f.

159*
160* -- LAPACK computational routine --
161* -- LAPACK is a software package provided by Univ. of Tennessee, --
162* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163*
164* .. Scalar Arguments ..
165 CHARACTER UPLO
166 INTEGER INFO, LDA, N, NB
167* ..
168* .. Array Arguments ..
169 INTEGER IPIV( * )
170 REAL A( LDA, * ), E( * ), WORK( N+NB+1, * )
171* ..
172*
173* =====================================================================
174*
175* .. Parameters ..
176 REAL ONE, ZERO
177 parameter( one = 1.0e+0, zero = 0.0e+0 )
178* ..
179* .. Local Scalars ..
180 LOGICAL UPPER
181 INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
182 REAL AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J,
183 $ U11_I_J, U11_IP1_J
184* ..
185* .. External Functions ..
186 LOGICAL LSAME
187 EXTERNAL lsame
188* ..
189* .. External Subroutines ..
190 EXTERNAL sgemm, ssyswapr, strtri, strmm, xerbla
191* ..
192* .. Intrinsic Functions ..
193 INTRINSIC abs, max, mod
194* ..
195* .. Executable Statements ..
196*
197* Test the input parameters.
198*
199 info = 0
200 upper = lsame( uplo, 'U' )
201 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
202 info = -1
203 ELSE IF( n.LT.0 ) THEN
204 info = -2
205 ELSE IF( lda.LT.max( 1, n ) ) THEN
206 info = -4
207 END IF
208*
209* Quick return if possible
210*
211 IF( info.NE.0 ) THEN
212 CALL xerbla( 'SSYTRI_3X', -info )
213 RETURN
214 END IF
215 IF( n.EQ.0 )
216 $ RETURN
217*
218* Workspace got Non-diag elements of D
219*
220 DO k = 1, n
221 work( k, 1 ) = e( k )
222 END DO
223*
224* Check that the diagonal matrix D is nonsingular.
225*
226 IF( upper ) THEN
227*
228* Upper triangular storage: examine D from bottom to top
229*
230 DO info = n, 1, -1
231 IF( ipiv( info ).GT.0 .AND. a( info, info ).EQ.zero )
232 $ RETURN
233 END DO
234 ELSE
235*
236* Lower triangular storage: examine D from top to bottom.
237*
238 DO info = 1, n
239 IF( ipiv( info ).GT.0 .AND. a( info, info ).EQ.zero )
240 $ RETURN
241 END DO
242 END IF
243*
244 info = 0
245*
246* Splitting Workspace
247* U01 is a block ( N, NB+1 )
248* The first element of U01 is in WORK( 1, 1 )
249* U11 is a block ( NB+1, NB+1 )
250* The first element of U11 is in WORK( N+1, 1 )
251*
252 u11 = n
253*
254* INVD is a block ( N, 2 )
255* The first element of INVD is in WORK( 1, INVD )
256*
257 invd = nb + 2
258
259 IF( upper ) THEN
260*
261* Begin Upper
262*
263* invA = P * inv(U**T) * inv(D) * inv(U) * P**T.
264*
265 CALL strtri( uplo, 'U', n, a, lda, info )
266*
267* inv(D) and inv(D) * inv(U)
268*
269 k = 1
270 DO WHILE( k.LE.n )
271 IF( ipiv( k ).GT.0 ) THEN
272* 1 x 1 diagonal NNB
273 work( k, invd ) = one / a( k, k )
274 work( k, invd+1 ) = zero
275 ELSE
276* 2 x 2 diagonal NNB
277 t = work( k+1, 1 )
278 ak = a( k, k ) / t
279 akp1 = a( k+1, k+1 ) / t
280 akkp1 = work( k+1, 1 ) / t
281 d = t*( ak*akp1-one )
282 work( k, invd ) = akp1 / d
283 work( k+1, invd+1 ) = ak / d
284 work( k, invd+1 ) = -akkp1 / d
285 work( k+1, invd ) = work( k, invd+1 )
286 k = k + 1
287 END IF
288 k = k + 1
289 END DO
290*
291* inv(U**T) = (inv(U))**T
292*
293* inv(U**T) * inv(D) * inv(U)
294*
295 cut = n
296 DO WHILE( cut.GT.0 )
297 nnb = nb
298 IF( cut.LE.nnb ) THEN
299 nnb = cut
300 ELSE
301 icount = 0
302* count negative elements,
303 DO i = cut+1-nnb, cut
304 IF( ipiv( i ).LT.0 ) icount = icount + 1
305 END DO
306* need a even number for a clear cut
307 IF( mod( icount, 2 ).EQ.1 ) nnb = nnb + 1
308 END IF
309
310 cut = cut - nnb
311*
312* U01 Block
313*
314 DO i = 1, cut
315 DO j = 1, nnb
316 work( i, j ) = a( i, cut+j )
317 END DO
318 END DO
319*
320* U11 Block
321*
322 DO i = 1, nnb
323 work( u11+i, i ) = one
324 DO j = 1, i-1
325 work( u11+i, j ) = zero
326 END DO
327 DO j = i+1, nnb
328 work( u11+i, j ) = a( cut+i, cut+j )
329 END DO
330 END DO
331*
332* invD * U01
333*
334 i = 1
335 DO WHILE( i.LE.cut )
336 IF( ipiv( i ).GT.0 ) THEN
337 DO j = 1, nnb
338 work( i, j ) = work( i, invd ) * work( i, j )
339 END DO
340 ELSE
341 DO j = 1, nnb
342 u01_i_j = work( i, j )
343 u01_ip1_j = work( i+1, j )
344 work( i, j ) = work( i, invd ) * u01_i_j
345 $ + work( i, invd+1 ) * u01_ip1_j
346 work( i+1, j ) = work( i+1, invd ) * u01_i_j
347 $ + work( i+1, invd+1 ) * u01_ip1_j
348 END DO
349 i = i + 1
350 END IF
351 i = i + 1
352 END DO
353*
354* invD1 * U11
355*
356 i = 1
357 DO WHILE ( i.LE.nnb )
358 IF( ipiv( cut+i ).GT.0 ) THEN
359 DO j = i, nnb
360 work( u11+i, j ) = work(cut+i,invd) * work(u11+i,j)
361 END DO
362 ELSE
363 DO j = i, nnb
364 u11_i_j = work(u11+i,j)
365 u11_ip1_j = work(u11+i+1,j)
366 work( u11+i, j ) = work(cut+i,invd) * work(u11+i,j)
367 $ + work(cut+i,invd+1) * work(u11+i+1,j)
368 work( u11+i+1, j ) = work(cut+i+1,invd) * u11_i_j
369 $ + work(cut+i+1,invd+1) * u11_ip1_j
370 END DO
371 i = i + 1
372 END IF
373 i = i + 1
374 END DO
375*
376* U11**T * invD1 * U11 -> U11
377*
378 CALL strmm( 'L', 'U', 'T', 'U', nnb, nnb,
379 $ one, a( cut+1, cut+1 ), lda, work( u11+1, 1 ),
380 $ n+nb+1 )
381*
382 DO i = 1, nnb
383 DO j = i, nnb
384 a( cut+i, cut+j ) = work( u11+i, j )
385 END DO
386 END DO
387*
388* U01**T * invD * U01 -> A( CUT+I, CUT+J )
389*
390 CALL sgemm( 'T', 'N', nnb, nnb, cut, one, a( 1, cut+1 ),
391 $ lda, work, n+nb+1, zero, work(u11+1,1), n+nb+1 )
392
393*
394* U11 = U11**T * invD1 * U11 + U01**T * invD * U01
395*
396 DO i = 1, nnb
397 DO j = i, nnb
398 a( cut+i, cut+j ) = a( cut+i, cut+j ) + work(u11+i,j)
399 END DO
400 END DO
401*
402* U01 = U00**T * invD0 * U01
403*
404 CALL strmm( 'L', uplo, 'T', 'U', cut, nnb,
405 $ one, a, lda, work, n+nb+1 )
406
407*
408* Update U01
409*
410 DO i = 1, cut
411 DO j = 1, nnb
412 a( i, cut+j ) = work( i, j )
413 END DO
414 END DO
415*
416* Next Block
417*
418 END DO
419*
420* Apply PERMUTATIONS P and P**T:
421* P * inv(U**T) * inv(D) * inv(U) * P**T.
422* Interchange rows and columns I and IPIV(I) in reverse order
423* from the formation order of IPIV vector for Upper case.
424*
425* ( We can use a loop over IPIV with increment 1,
426* since the ABS value of IPIV(I) represents the row (column)
427* index of the interchange with row (column) i in both 1x1
428* and 2x2 pivot cases, i.e. we don't need separate code branches
429* for 1x1 and 2x2 pivot cases )
430*
431 DO i = 1, n
432 ip = abs( ipiv( i ) )
433 IF( ip.NE.i ) THEN
434 IF (i .LT. ip) CALL ssyswapr( uplo, n, a, lda, i ,ip )
435 IF (i .GT. ip) CALL ssyswapr( uplo, n, a, lda, ip ,i )
436 END IF
437 END DO
438*
439 ELSE
440*
441* Begin Lower
442*
443* inv A = P * inv(L**T) * inv(D) * inv(L) * P**T.
444*
445 CALL strtri( uplo, 'U', n, a, lda, info )
446*
447* inv(D) and inv(D) * inv(L)
448*
449 k = n
450 DO WHILE ( k .GE. 1 )
451 IF( ipiv( k ).GT.0 ) THEN
452* 1 x 1 diagonal NNB
453 work( k, invd ) = one / a( k, k )
454 work( k, invd+1 ) = zero
455 ELSE
456* 2 x 2 diagonal NNB
457 t = work( k-1, 1 )
458 ak = a( k-1, k-1 ) / t
459 akp1 = a( k, k ) / t
460 akkp1 = work( k-1, 1 ) / t
461 d = t*( ak*akp1-one )
462 work( k-1, invd ) = akp1 / d
463 work( k, invd ) = ak / d
464 work( k, invd+1 ) = -akkp1 / d
465 work( k-1, invd+1 ) = work( k, invd+1 )
466 k = k - 1
467 END IF
468 k = k - 1
469 END DO
470*
471* inv(L**T) = (inv(L))**T
472*
473* inv(L**T) * inv(D) * inv(L)
474*
475 cut = 0
476 DO WHILE( cut.LT.n )
477 nnb = nb
478 IF( (cut + nnb).GT.n ) THEN
479 nnb = n - cut
480 ELSE
481 icount = 0
482* count negative elements,
483 DO i = cut + 1, cut+nnb
484 IF ( ipiv( i ).LT.0 ) icount = icount + 1
485 END DO
486* need a even number for a clear cut
487 IF( mod( icount, 2 ).EQ.1 ) nnb = nnb + 1
488 END IF
489*
490* L21 Block
491*
492 DO i = 1, n-cut-nnb
493 DO j = 1, nnb
494 work( i, j ) = a( cut+nnb+i, cut+j )
495 END DO
496 END DO
497*
498* L11 Block
499*
500 DO i = 1, nnb
501 work( u11+i, i) = one
502 DO j = i+1, nnb
503 work( u11+i, j ) = zero
504 END DO
505 DO j = 1, i-1
506 work( u11+i, j ) = a( cut+i, cut+j )
507 END DO
508 END DO
509*
510* invD*L21
511*
512 i = n-cut-nnb
513 DO WHILE( i.GE.1 )
514 IF( ipiv( cut+nnb+i ).GT.0 ) THEN
515 DO j = 1, nnb
516 work( i, j ) = work( cut+nnb+i, invd) * work( i, j)
517 END DO
518 ELSE
519 DO j = 1, nnb
520 u01_i_j = work(i,j)
521 u01_ip1_j = work(i-1,j)
522 work(i,j)=work(cut+nnb+i,invd)*u01_i_j+
523 $ work(cut+nnb+i,invd+1)*u01_ip1_j
524 work(i-1,j)=work(cut+nnb+i-1,invd+1)*u01_i_j+
525 $ work(cut+nnb+i-1,invd)*u01_ip1_j
526 END DO
527 i = i - 1
528 END IF
529 i = i - 1
530 END DO
531*
532* invD1*L11
533*
534 i = nnb
535 DO WHILE( i.GE.1 )
536 IF( ipiv( cut+i ).GT.0 ) THEN
537 DO j = 1, nnb
538 work( u11+i, j ) = work( cut+i, invd)*work(u11+i,j)
539 END DO
540
541 ELSE
542 DO j = 1, nnb
543 u11_i_j = work( u11+i, j )
544 u11_ip1_j = work( u11+i-1, j )
545 work( u11+i, j ) = work(cut+i,invd) * work(u11+i,j)
546 $ + work(cut+i,invd+1) * u11_ip1_j
547 work( u11+i-1, j ) = work(cut+i-1,invd+1) * u11_i_j
548 $ + work(cut+i-1,invd) * u11_ip1_j
549 END DO
550 i = i - 1
551 END IF
552 i = i - 1
553 END DO
554*
555* L11**T * invD1 * L11 -> L11
556*
557 CALL strmm( 'L', uplo, 'T', 'U', nnb, nnb, one,
558 $ a( cut+1, cut+1 ), lda, work( u11+1, 1 ),
559 $ n+nb+1 )
560
561*
562 DO i = 1, nnb
563 DO j = 1, i
564 a( cut+i, cut+j ) = work( u11+i, j )
565 END DO
566 END DO
567*
568 IF( (cut+nnb).LT.n ) THEN
569*
570* L21**T * invD2*L21 -> A( CUT+I, CUT+J )
571*
572 CALL sgemm( 'T', 'N', nnb, nnb, n-nnb-cut, one,
573 $ a( cut+nnb+1, cut+1 ), lda, work, n+nb+1,
574 $ zero, work( u11+1, 1 ), n+nb+1 )
575
576*
577* L11 = L11**T * invD1 * L11 + U01**T * invD * U01
578*
579 DO i = 1, nnb
580 DO j = 1, i
581 a( cut+i, cut+j ) = a( cut+i, cut+j )+work(u11+i,j)
582 END DO
583 END DO
584*
585* L01 = L22**T * invD2 * L21
586*
587 CALL strmm( 'L', uplo, 'T', 'U', n-nnb-cut, nnb, one,
588 $ a( cut+nnb+1, cut+nnb+1 ), lda, work,
589 $ n+nb+1 )
590*
591* Update L21
592*
593 DO i = 1, n-cut-nnb
594 DO j = 1, nnb
595 a( cut+nnb+i, cut+j ) = work( i, j )
596 END DO
597 END DO
598*
599 ELSE
600*
601* L11 = L11**T * invD1 * L11
602*
603 DO i = 1, nnb
604 DO j = 1, i
605 a( cut+i, cut+j ) = work( u11+i, j )
606 END DO
607 END DO
608 END IF
609*
610* Next Block
611*
612 cut = cut + nnb
613*
614 END DO
615*
616* Apply PERMUTATIONS P and P**T:
617* P * inv(L**T) * inv(D) * inv(L) * P**T.
618* Interchange rows and columns I and IPIV(I) in reverse order
619* from the formation order of IPIV vector for Lower case.
620*
621* ( We can use a loop over IPIV with increment -1,
622* since the ABS value of IPIV(I) represents the row (column)
623* index of the interchange with row (column) i in both 1x1
624* and 2x2 pivot cases, i.e. we don't need separate code branches
625* for 1x1 and 2x2 pivot cases )
626*
627 DO i = n, 1, -1
628 ip = abs( ipiv( i ) )
629 IF( ip.NE.i ) THEN
630 IF (i .LT. ip) CALL ssyswapr( uplo, n, a, lda, i ,ip )
631 IF (i .GT. ip) CALL ssyswapr( uplo, n, a, lda, ip ,i )
632 END IF
633 END DO
634*
635 END IF
636*
637 RETURN
638*
639* End of SSYTRI_3X
640*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
subroutine ssyswapr(uplo, n, a, lda, i1, i2)
SSYSWAPR applies an elementary permutation on the rows and columns of a symmetric matrix.
Definition ssyswapr.f:100
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRMM
Definition strmm.f:177
subroutine strtri(uplo, diag, n, a, lda, info)
STRTRI
Definition strtri.f:109
Here is the call graph for this function:
Here is the caller graph for this function: