LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgtsv()

subroutine cgtsv ( integer  n,
integer  nrhs,
complex, dimension( * )  dl,
complex, dimension( * )  d,
complex, dimension( * )  du,
complex, dimension( ldb, * )  b,
integer  ldb,
integer  info 
)

CGTSV computes the solution to system of linear equations A * X = B for GT matrices

Download CGTSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CGTSV  solves the equation

    A*X = B,

 where A is an N-by-N tridiagonal matrix, by Gaussian elimination with
 partial pivoting.

 Note that the equation  A**T *X = B  may be solved by interchanging the
 order of the arguments DU and DL.
Parameters
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in,out]DL
          DL is COMPLEX array, dimension (N-1)
          On entry, DL must contain the (n-1) subdiagonal elements of
          A.
          On exit, DL is overwritten by the (n-2) elements of the
          second superdiagonal of the upper triangular matrix U from
          the LU factorization of A, in DL(1), ..., DL(n-2).
[in,out]D
          D is COMPLEX array, dimension (N)
          On entry, D must contain the diagonal elements of A.
          On exit, D is overwritten by the n diagonal elements of U.
[in,out]DU
          DU is COMPLEX array, dimension (N-1)
          On entry, DU must contain the (n-1) superdiagonal elements
          of A.
          On exit, DU is overwritten by the (n-1) elements of the first
          superdiagonal of U.
[in,out]B
          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero, and the solution
                has not been computed.  The factorization has not been
                completed unless i = N.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 123 of file cgtsv.f.

124*
125* -- LAPACK driver routine --
126* -- LAPACK is a software package provided by Univ. of Tennessee, --
127* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128*
129* .. Scalar Arguments ..
130 INTEGER INFO, LDB, N, NRHS
131* ..
132* .. Array Arguments ..
133 COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * )
134* ..
135*
136* =====================================================================
137*
138* .. Parameters ..
139 COMPLEX ZERO
140 parameter( zero = ( 0.0e+0, 0.0e+0 ) )
141* ..
142* .. Local Scalars ..
143 INTEGER J, K
144 COMPLEX MULT, TEMP, ZDUM
145* ..
146* .. Intrinsic Functions ..
147 INTRINSIC abs, aimag, max, real
148* ..
149* .. External Subroutines ..
150 EXTERNAL xerbla
151* ..
152* .. Statement Functions ..
153 REAL CABS1
154* ..
155* .. Statement Function definitions ..
156 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
157* ..
158* .. Executable Statements ..
159*
160 info = 0
161 IF( n.LT.0 ) THEN
162 info = -1
163 ELSE IF( nrhs.LT.0 ) THEN
164 info = -2
165 ELSE IF( ldb.LT.max( 1, n ) ) THEN
166 info = -7
167 END IF
168 IF( info.NE.0 ) THEN
169 CALL xerbla( 'CGTSV ', -info )
170 RETURN
171 END IF
172*
173 IF( n.EQ.0 )
174 $ RETURN
175*
176 DO 30 k = 1, n - 1
177 IF( dl( k ).EQ.zero ) THEN
178*
179* Subdiagonal is zero, no elimination is required.
180*
181 IF( d( k ).EQ.zero ) THEN
182*
183* Diagonal is zero: set INFO = K and return; a unique
184* solution can not be found.
185*
186 info = k
187 RETURN
188 END IF
189 ELSE IF( cabs1( d( k ) ).GE.cabs1( dl( k ) ) ) THEN
190*
191* No row interchange required
192*
193 mult = dl( k ) / d( k )
194 d( k+1 ) = d( k+1 ) - mult*du( k )
195 DO 10 j = 1, nrhs
196 b( k+1, j ) = b( k+1, j ) - mult*b( k, j )
197 10 CONTINUE
198 IF( k.LT.( n-1 ) )
199 $ dl( k ) = zero
200 ELSE
201*
202* Interchange rows K and K+1
203*
204 mult = d( k ) / dl( k )
205 d( k ) = dl( k )
206 temp = d( k+1 )
207 d( k+1 ) = du( k ) - mult*temp
208 IF( k.LT.( n-1 ) ) THEN
209 dl( k ) = du( k+1 )
210 du( k+1 ) = -mult*dl( k )
211 END IF
212 du( k ) = temp
213 DO 20 j = 1, nrhs
214 temp = b( k, j )
215 b( k, j ) = b( k+1, j )
216 b( k+1, j ) = temp - mult*b( k+1, j )
217 20 CONTINUE
218 END IF
219 30 CONTINUE
220 IF( d( n ).EQ.zero ) THEN
221 info = n
222 RETURN
223 END IF
224*
225* Back solve with the matrix U from the factorization.
226*
227 DO 50 j = 1, nrhs
228 b( n, j ) = b( n, j ) / d( n )
229 IF( n.GT.1 )
230 $ b( n-1, j ) = ( b( n-1, j )-du( n-1 )*b( n, j ) ) / d( n-1 )
231 DO 40 k = n - 2, 1, -1
232 b( k, j ) = ( b( k, j )-du( k )*b( k+1, j )-dl( k )*
233 $ b( k+2, j ) ) / d( k )
234 40 CONTINUE
235 50 CONTINUE
236*
237 RETURN
238*
239* End of CGTSV
240*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
Here is the call graph for this function:
Here is the caller graph for this function: