LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dtrrfs | ( | character | uplo, |
character | trans, | ||
character | diag, | ||
integer | n, | ||
integer | nrhs, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
double precision, dimension( * ) | ferr, | ||
double precision, dimension( * ) | berr, | ||
double precision, dimension( * ) | work, | ||
integer, dimension( * ) | iwork, | ||
integer | info ) |
DTRRFS
Download DTRRFS + dependencies [TGZ] [ZIP] [TXT]
!> !> DTRRFS provides error bounds and backward error estimates for the !> solution to a system of linear equations with a triangular !> coefficient matrix. !> !> The solution matrix X must be computed by DTRTRS or some other !> means before entering this routine. DTRRFS does not do iterative !> refinement because doing so cannot improve the backward error. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
[in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose = Transpose) !> |
[in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !> |
[in] | A | !> A is DOUBLE PRECISION array, dimension (LDA,N) !> The triangular matrix A. If UPLO = 'U', the leading N-by-N !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced. If UPLO = 'L', the leading N-by-N lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[in] | B | !> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> The right hand side matrix B. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[in] | X | !> X is DOUBLE PRECISION array, dimension (LDX,NRHS) !> The solution matrix X. !> |
[in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
[out] | FERR | !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !> |
[out] | BERR | !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !> |
[out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (3*N) !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (N) !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 178 of file dtrrfs.f.