LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ dlaebz()

subroutine dlaebz ( integer ijob,
integer nitmax,
integer n,
integer mmax,
integer minp,
integer nbmin,
double precision abstol,
double precision reltol,
double precision pivmin,
double precision, dimension( * ) d,
double precision, dimension( * ) e,
double precision, dimension( * ) e2,
integer, dimension( * ) nval,
double precision, dimension( mmax, * ) ab,
double precision, dimension( * ) c,
integer mout,
integer, dimension( mmax, * ) nab,
double precision, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

DLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine sstebz.

Download DLAEBZ + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> DLAEBZ contains the iteration loops which compute and use the !> function N(w), which is the count of eigenvalues of a symmetric !> tridiagonal matrix T less than or equal to its argument w. It !> performs a choice of two types of loops: !> !> IJOB=1, followed by !> IJOB=2: It takes as input a list of intervals and returns a list of !> sufficiently small intervals whose union contains the same !> eigenvalues as the union of the original intervals. !> The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP. !> The output interval (AB(j,1),AB(j,2)] will contain !> eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT. !> !> IJOB=3: It performs a binary search in each input interval !> (AB(j,1),AB(j,2)] for a point w(j) such that !> N(w(j))=NVAL(j), and uses C(j) as the starting point of !> the search. If such a w(j) is found, then on output !> AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output !> (AB(j,1),AB(j,2)] will be a small interval containing the !> point where N(w) jumps through NVAL(j), unless that point !> lies outside the initial interval. !> !> Note that the intervals are in all cases half-open intervals, !> i.e., of the form (a,b] , which includes b but not a . !> !> To avoid underflow, the matrix should be scaled so that its largest !> element is no greater than overflow**(1/2) * underflow**(1/4) !> in absolute value. To assure the most accurate computation !> of small eigenvalues, the matrix should be scaled to be !> not much smaller than that, either. !> !> See W. Kahan , Report CS41, Computer Science Dept., Stanford !> University, July 21, 1966 !> !> Note: the arguments are, in general, *not* checked for unreasonable !> values. !>
Parameters
[in]IJOB
!> IJOB is INTEGER !> Specifies what is to be done: !> = 1: Compute NAB for the initial intervals. !> = 2: Perform bisection iteration to find eigenvalues of T. !> = 3: Perform bisection iteration to invert N(w), i.e., !> to find a point which has a specified number of !> eigenvalues of T to its left. !> Other values will cause DLAEBZ to return with INFO=-1. !>
[in]NITMAX
!> NITMAX is INTEGER !> The maximum number of of bisection to be !> performed, i.e., an interval of width W will not be made !> smaller than 2^(-NITMAX) * W. If not all intervals !> have converged after NITMAX iterations, then INFO is set !> to the number of non-converged intervals. !>
[in]N
!> N is INTEGER !> The dimension n of the tridiagonal matrix T. It must be at !> least 1. !>
[in]MMAX
!> MMAX is INTEGER !> The maximum number of intervals. If more than MMAX intervals !> are generated, then DLAEBZ will quit with INFO=MMAX+1. !>
[in]MINP
!> MINP is INTEGER !> The initial number of intervals. It may not be greater than !> MMAX. !>
[in]NBMIN
!> NBMIN is INTEGER !> The smallest number of intervals that should be processed !> using a vector loop. If zero, then only the scalar loop !> will be used. !>
[in]ABSTOL
!> ABSTOL is DOUBLE PRECISION !> The minimum (absolute) width of an interval. When an !> interval is narrower than ABSTOL, or than RELTOL times the !> larger (in magnitude) endpoint, then it is considered to be !> sufficiently small, i.e., converged. This must be at least !> zero. !>
[in]RELTOL
!> RELTOL is DOUBLE PRECISION !> The minimum relative width of an interval. When an interval !> is narrower than ABSTOL, or than RELTOL times the larger (in !> magnitude) endpoint, then it is considered to be !> sufficiently small, i.e., converged. Note: this should !> always be at least radix*machine epsilon. !>
[in]PIVMIN
!> PIVMIN is DOUBLE PRECISION !> The minimum absolute value of a in the Sturm !> sequence loop. !> This must be at least max |e(j)**2|*safe_min and at !> least safe_min, where safe_min is at least !> the smallest number that can divide one without overflow. !>
[in]D
!> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of the tridiagonal matrix T. !>
[in]E
!> E is DOUBLE PRECISION array, dimension (N) !> The offdiagonal elements of the tridiagonal matrix T in !> positions 1 through N-1. E(N) is arbitrary. !>
[in]E2
!> E2 is DOUBLE PRECISION array, dimension (N) !> The squares of the offdiagonal elements of the tridiagonal !> matrix T. E2(N) is ignored. !>
[in,out]NVAL
!> NVAL is INTEGER array, dimension (MINP) !> If IJOB=1 or 2, not referenced. !> If IJOB=3, the desired values of N(w). The elements of NVAL !> will be reordered to correspond with the intervals in AB. !> Thus, NVAL(j) on output will not, in general be the same as !> NVAL(j) on input, but it will correspond with the interval !> (AB(j,1),AB(j,2)] on output. !>
[in,out]AB
!> AB is DOUBLE PRECISION array, dimension (MMAX,2) !> The endpoints of the intervals. AB(j,1) is a(j), the left !> endpoint of the j-th interval, and AB(j,2) is b(j), the !> right endpoint of the j-th interval. The input intervals !> will, in general, be modified, split, and reordered by the !> calculation. !>
[in,out]C
!> C is DOUBLE PRECISION array, dimension (MMAX) !> If IJOB=1, ignored. !> If IJOB=2, workspace. !> If IJOB=3, then on input C(j) should be initialized to the !> first search point in the binary search. !>
[out]MOUT
!> MOUT is INTEGER !> If IJOB=1, the number of eigenvalues in the intervals. !> If IJOB=2 or 3, the number of intervals output. !> If IJOB=3, MOUT will equal MINP. !>
[in,out]NAB
!> NAB is INTEGER array, dimension (MMAX,2) !> If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). !> If IJOB=2, then on input, NAB(i,j) should be set. It must !> satisfy the condition: !> N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)), !> which means that in interval i only eigenvalues !> NAB(i,1)+1,...,NAB(i,2) will be considered. Usually, !> NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with !> IJOB=1. !> On output, NAB(i,j) will contain !> max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of !> the input interval that the output interval !> (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the !> the input values of NAB(k,1) and NAB(k,2). !> If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)), !> unless N(w) > NVAL(i) for all search points w , in which !> case NAB(i,1) will not be modified, i.e., the output !> value will be the same as the input value (modulo !> reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) !> for all search points w , in which case NAB(i,2) will !> not be modified. Normally, NAB should be set to some !> distinctive value(s) before DLAEBZ is called. !>
[out]WORK
!> WORK is DOUBLE PRECISION array, dimension (MMAX) !> Workspace. !>
[out]IWORK
!> IWORK is INTEGER array, dimension (MMAX) !> Workspace. !>
[out]INFO
!> INFO is INTEGER !> = 0: All intervals converged. !> = 1--MMAX: The last INFO intervals did not converge. !> = MMAX+1: More than MMAX intervals were generated. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> This routine is intended to be called only by other LAPACK !> routines, thus the interface is less user-friendly. It is intended !> for two purposes: !> !> (a) finding eigenvalues. In this case, DLAEBZ should have one or !> more initial intervals set up in AB, and DLAEBZ should be called !> with IJOB=1. This sets up NAB, and also counts the eigenvalues. !> Intervals with no eigenvalues would usually be thrown out at !> this point. Also, if not all the eigenvalues in an interval i !> are desired, NAB(i,1) can be increased or NAB(i,2) decreased. !> For example, set NAB(i,1)=NAB(i,2)-1 to get the largest !> eigenvalue. DLAEBZ is then called with IJOB=2 and MMAX !> no smaller than the value of MOUT returned by the call with !> IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1 !> through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the !> tolerance specified by ABSTOL and RELTOL. !> !> (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). !> In this case, start with a Gershgorin interval (a,b). Set up !> AB to contain 2 search intervals, both initially (a,b). One !> NVAL element should contain f-1 and the other should contain l !> , while C should contain a and b, resp. NAB(i,1) should be -1 !> and NAB(i,2) should be N+1, to flag an error if the desired !> interval does not lie in (a,b). DLAEBZ is then called with !> IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals -- !> j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while !> if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r !> >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and !> N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and !> w(l-r)=...=w(l+k) are handled similarly. !>

Definition at line 314 of file dlaebz.f.

317*
318* -- LAPACK auxiliary routine --
319* -- LAPACK is a software package provided by Univ. of Tennessee, --
320* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
321*
322* .. Scalar Arguments ..
323 INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
324 DOUBLE PRECISION ABSTOL, PIVMIN, RELTOL
325* ..
326* .. Array Arguments ..
327 INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * )
328 DOUBLE PRECISION AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
329 $ WORK( * )
330* ..
331*
332* =====================================================================
333*
334* .. Parameters ..
335 DOUBLE PRECISION ZERO, TWO, HALF
336 parameter( zero = 0.0d0, two = 2.0d0,
337 $ half = 1.0d0 / two )
338* ..
339* .. Local Scalars ..
340 INTEGER ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
341 $ KLNEW
342 DOUBLE PRECISION TMP1, TMP2
343* ..
344* .. Intrinsic Functions ..
345 INTRINSIC abs, max, min
346* ..
347* .. Executable Statements ..
348*
349* Check for Errors
350*
351 info = 0
352 IF( ijob.LT.1 .OR. ijob.GT.3 ) THEN
353 info = -1
354 RETURN
355 END IF
356*
357* Initialize NAB
358*
359 IF( ijob.EQ.1 ) THEN
360*
361* Compute the number of eigenvalues in the initial intervals.
362*
363 mout = 0
364 DO 30 ji = 1, minp
365 DO 20 jp = 1, 2
366 tmp1 = d( 1 ) - ab( ji, jp )
367 IF( abs( tmp1 ).LT.pivmin )
368 $ tmp1 = -pivmin
369 nab( ji, jp ) = 0
370 IF( tmp1.LE.zero )
371 $ nab( ji, jp ) = 1
372*
373 DO 10 j = 2, n
374 tmp1 = d( j ) - e2( j-1 ) / tmp1 - ab( ji, jp )
375 IF( abs( tmp1 ).LT.pivmin )
376 $ tmp1 = -pivmin
377 IF( tmp1.LE.zero )
378 $ nab( ji, jp ) = nab( ji, jp ) + 1
379 10 CONTINUE
380 20 CONTINUE
381 mout = mout + nab( ji, 2 ) - nab( ji, 1 )
382 30 CONTINUE
383 RETURN
384 END IF
385*
386* Initialize for loop
387*
388* KF and KL have the following meaning:
389* Intervals 1,...,KF-1 have converged.
390* Intervals KF,...,KL still need to be refined.
391*
392 kf = 1
393 kl = minp
394*
395* If IJOB=2, initialize C.
396* If IJOB=3, use the user-supplied starting point.
397*
398 IF( ijob.EQ.2 ) THEN
399 DO 40 ji = 1, minp
400 c( ji ) = half*( ab( ji, 1 )+ab( ji, 2 ) )
401 40 CONTINUE
402 END IF
403*
404* Iteration loop
405*
406 DO 130 jit = 1, nitmax
407*
408* Loop over intervals
409*
410 IF( kl-kf+1.GE.nbmin .AND. nbmin.GT.0 ) THEN
411*
412* Begin of Parallel Version of the loop
413*
414 DO 60 ji = kf, kl
415*
416* Compute N(c), the number of eigenvalues less than c
417*
418 work( ji ) = d( 1 ) - c( ji )
419 iwork( ji ) = 0
420 IF( work( ji ).LE.pivmin ) THEN
421 iwork( ji ) = 1
422 work( ji ) = min( work( ji ), -pivmin )
423 END IF
424*
425 DO 50 j = 2, n
426 work( ji ) = d( j ) - e2( j-1 ) / work( ji ) - c( ji )
427 IF( work( ji ).LE.pivmin ) THEN
428 iwork( ji ) = iwork( ji ) + 1
429 work( ji ) = min( work( ji ), -pivmin )
430 END IF
431 50 CONTINUE
432 60 CONTINUE
433*
434 IF( ijob.LE.2 ) THEN
435*
436* IJOB=2: Choose all intervals containing eigenvalues.
437*
438 klnew = kl
439 DO 70 ji = kf, kl
440*
441* Insure that N(w) is monotone
442*
443 iwork( ji ) = min( nab( ji, 2 ),
444 $ max( nab( ji, 1 ), iwork( ji ) ) )
445*
446* Update the Queue -- add intervals if both halves
447* contain eigenvalues.
448*
449 IF( iwork( ji ).EQ.nab( ji, 2 ) ) THEN
450*
451* No eigenvalue in the upper interval:
452* just use the lower interval.
453*
454 ab( ji, 2 ) = c( ji )
455*
456 ELSE IF( iwork( ji ).EQ.nab( ji, 1 ) ) THEN
457*
458* No eigenvalue in the lower interval:
459* just use the upper interval.
460*
461 ab( ji, 1 ) = c( ji )
462 ELSE
463 klnew = klnew + 1
464 IF( klnew.LE.mmax ) THEN
465*
466* Eigenvalue in both intervals -- add upper to
467* queue.
468*
469 ab( klnew, 2 ) = ab( ji, 2 )
470 nab( klnew, 2 ) = nab( ji, 2 )
471 ab( klnew, 1 ) = c( ji )
472 nab( klnew, 1 ) = iwork( ji )
473 ab( ji, 2 ) = c( ji )
474 nab( ji, 2 ) = iwork( ji )
475 ELSE
476 info = mmax + 1
477 END IF
478 END IF
479 70 CONTINUE
480 IF( info.NE.0 )
481 $ RETURN
482 kl = klnew
483 ELSE
484*
485* IJOB=3: Binary search. Keep only the interval containing
486* w s.t. N(w) = NVAL
487*
488 DO 80 ji = kf, kl
489 IF( iwork( ji ).LE.nval( ji ) ) THEN
490 ab( ji, 1 ) = c( ji )
491 nab( ji, 1 ) = iwork( ji )
492 END IF
493 IF( iwork( ji ).GE.nval( ji ) ) THEN
494 ab( ji, 2 ) = c( ji )
495 nab( ji, 2 ) = iwork( ji )
496 END IF
497 80 CONTINUE
498 END IF
499*
500 ELSE
501*
502* End of Parallel Version of the loop
503*
504* Begin of Serial Version of the loop
505*
506 klnew = kl
507 DO 100 ji = kf, kl
508*
509* Compute N(w), the number of eigenvalues less than w
510*
511 tmp1 = c( ji )
512 tmp2 = d( 1 ) - tmp1
513 itmp1 = 0
514 IF( tmp2.LE.pivmin ) THEN
515 itmp1 = 1
516 tmp2 = min( tmp2, -pivmin )
517 END IF
518*
519 DO 90 j = 2, n
520 tmp2 = d( j ) - e2( j-1 ) / tmp2 - tmp1
521 IF( tmp2.LE.pivmin ) THEN
522 itmp1 = itmp1 + 1
523 tmp2 = min( tmp2, -pivmin )
524 END IF
525 90 CONTINUE
526*
527 IF( ijob.LE.2 ) THEN
528*
529* IJOB=2: Choose all intervals containing eigenvalues.
530*
531* Insure that N(w) is monotone
532*
533 itmp1 = min( nab( ji, 2 ),
534 $ max( nab( ji, 1 ), itmp1 ) )
535*
536* Update the Queue -- add intervals if both halves
537* contain eigenvalues.
538*
539 IF( itmp1.EQ.nab( ji, 2 ) ) THEN
540*
541* No eigenvalue in the upper interval:
542* just use the lower interval.
543*
544 ab( ji, 2 ) = tmp1
545*
546 ELSE IF( itmp1.EQ.nab( ji, 1 ) ) THEN
547*
548* No eigenvalue in the lower interval:
549* just use the upper interval.
550*
551 ab( ji, 1 ) = tmp1
552 ELSE IF( klnew.LT.mmax ) THEN
553*
554* Eigenvalue in both intervals -- add upper to queue.
555*
556 klnew = klnew + 1
557 ab( klnew, 2 ) = ab( ji, 2 )
558 nab( klnew, 2 ) = nab( ji, 2 )
559 ab( klnew, 1 ) = tmp1
560 nab( klnew, 1 ) = itmp1
561 ab( ji, 2 ) = tmp1
562 nab( ji, 2 ) = itmp1
563 ELSE
564 info = mmax + 1
565 RETURN
566 END IF
567 ELSE
568*
569* IJOB=3: Binary search. Keep only the interval
570* containing w s.t. N(w) = NVAL
571*
572 IF( itmp1.LE.nval( ji ) ) THEN
573 ab( ji, 1 ) = tmp1
574 nab( ji, 1 ) = itmp1
575 END IF
576 IF( itmp1.GE.nval( ji ) ) THEN
577 ab( ji, 2 ) = tmp1
578 nab( ji, 2 ) = itmp1
579 END IF
580 END IF
581 100 CONTINUE
582 kl = klnew
583*
584 END IF
585*
586* Check for convergence
587*
588 kfnew = kf
589 DO 110 ji = kf, kl
590 tmp1 = abs( ab( ji, 2 )-ab( ji, 1 ) )
591 tmp2 = max( abs( ab( ji, 2 ) ), abs( ab( ji, 1 ) ) )
592 IF( tmp1.LT.max( abstol, pivmin, reltol*tmp2 ) .OR.
593 $ nab( ji, 1 ).GE.nab( ji, 2 ) ) THEN
594*
595* Converged -- Swap with position KFNEW,
596* then increment KFNEW
597*
598 IF( ji.GT.kfnew ) THEN
599 tmp1 = ab( ji, 1 )
600 tmp2 = ab( ji, 2 )
601 itmp1 = nab( ji, 1 )
602 itmp2 = nab( ji, 2 )
603 ab( ji, 1 ) = ab( kfnew, 1 )
604 ab( ji, 2 ) = ab( kfnew, 2 )
605 nab( ji, 1 ) = nab( kfnew, 1 )
606 nab( ji, 2 ) = nab( kfnew, 2 )
607 ab( kfnew, 1 ) = tmp1
608 ab( kfnew, 2 ) = tmp2
609 nab( kfnew, 1 ) = itmp1
610 nab( kfnew, 2 ) = itmp2
611 IF( ijob.EQ.3 ) THEN
612 itmp1 = nval( ji )
613 nval( ji ) = nval( kfnew )
614 nval( kfnew ) = itmp1
615 END IF
616 END IF
617 kfnew = kfnew + 1
618 END IF
619 110 CONTINUE
620 kf = kfnew
621*
622* Choose Midpoints
623*
624 DO 120 ji = kf, kl
625 c( ji ) = half*( ab( ji, 1 )+ab( ji, 2 ) )
626 120 CONTINUE
627*
628* If no more intervals to refine, quit.
629*
630 IF( kf.GT.kl )
631 $ GO TO 140
632 130 CONTINUE
633*
634* Converged
635*
636 140 CONTINUE
637 info = max( kl+1-kf, 0 )
638 mout = kl
639*
640 RETURN
641*
642* End of DLAEBZ
643*
Here is the caller graph for this function: