LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dorgtsqr_row | ( | integer | m, |
integer | n, | ||
integer | mb, | ||
integer | nb, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldt, * ) | t, | ||
integer | ldt, | ||
double precision, dimension( * ) | work, | ||
integer | lwork, | ||
integer | info ) |
DORGTSQR_ROW
Download DORGTSQR_ROW + dependencies [TGZ] [ZIP] [TXT]
!> !> DORGTSQR_ROW generates an M-by-N real matrix Q_out with !> orthonormal columns from the output of DLATSQR. These N orthonormal !> columns are the first N columns of a product of complex unitary !> matrices Q(k)_in of order M, which are returned by DLATSQR in !> a special format. !> !> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). !> !> The input matrices Q(k)_in are stored in row and column blocks in A. !> See the documentation of DLATSQR for more details on the format of !> Q(k)_in, where each Q(k)_in is represented by block Householder !> transformations. This routine calls an auxiliary routine DLARFB_GETT, !> where the computation is performed on each individual block. The !> algorithm first sweeps NB-sized column blocks from the right to left !> starting in the bottom row block and continues to the top row block !> (hence _ROW in the routine name). This sweep is in reverse order of !> the order in which DLATSQR generates the output blocks. !>
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !> |
[in] | MB | !> MB is INTEGER !> The row block size used by DLATSQR to return !> arrays A and T. MB > N. !> (Note that if MB > M, then M is used instead of MB !> as the row block size). !> |
[in] | NB | !> NB is INTEGER !> The column block size used by DLATSQR to return !> arrays A and T. NB >= 1. !> (Note that if NB > N, then N is used instead of NB !> as the column block size). !> |
[in,out] | A | !> A is DOUBLE PRECISION array, dimension (LDA,N) !> !> On entry: !> !> The elements on and above the diagonal are not used as !> input. The elements below the diagonal represent the unit !> lower-trapezoidal blocked matrix V computed by DLATSQR !> that defines the input matrices Q_in(k) (ones on the !> diagonal are not stored). See DLATSQR for more details. !> !> On exit: !> !> The array A contains an M-by-N orthonormal matrix Q_out, !> i.e the columns of A are orthogonal unit vectors. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[in] | T | !> T is DOUBLE PRECISION array, !> dimension (LDT, N * NIRB) !> where NIRB = Number_of_input_row_blocks !> = MAX( 1, CEIL((M-N)/(MB-N)) ) !> Let NICB = Number_of_input_col_blocks !> = CEIL(N/NB) !> !> The upper-triangular block reflectors used to define the !> input matrices Q_in(k), k=(1:NIRB*NICB). The block !> reflectors are stored in compact form in NIRB block !> reflector sequences. Each of the NIRB block reflector !> sequences is stored in a larger NB-by-N column block of T !> and consists of NICB smaller NB-by-NB upper-triangular !> column blocks. See DLATSQR for more details on the format !> of T. !> |
[in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. !> LDT >= max(1,min(NB,N)). !> |
[out] | WORK | !> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), !> where NBLOCAL=MIN(NB,N). !> If LWORK = -1, then a workspace query is assumed. !> The routine only calculates the optimal size of the WORK !> array, returns this value as the first entry of the WORK !> array, and no error message related to LWORK is issued !> by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> November 2020, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !>
Definition at line 185 of file dorgtsqr_row.f.