 LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

## ◆ cglmts()

 subroutine cglmts ( integer N, integer M, integer P, complex, dimension( lda, * ) A, complex, dimension( lda, * ) AF, integer LDA, complex, dimension( ldb, * ) B, complex, dimension( ldb, * ) BF, integer LDB, complex, dimension( * ) D, complex, dimension( * ) DF, complex, dimension( * ) X, complex, dimension( * ) U, complex, dimension( lwork ) WORK, integer LWORK, real, dimension( * ) RWORK, real RESULT )

CGLMTS

Purpose:
``` CGLMTS tests CGGGLM - a subroutine for solving the generalized
linear model problem.```
Parameters
 [in] N ``` N is INTEGER The number of rows of the matrices A and B. N >= 0.``` [in] M ``` M is INTEGER The number of columns of the matrix A. M >= 0.``` [in] P ``` P is INTEGER The number of columns of the matrix B. P >= 0.``` [in] A ``` A is COMPLEX array, dimension (LDA,M) The N-by-M matrix A.``` [out] AF ` AF is COMPLEX array, dimension (LDA,M)` [in] LDA ``` LDA is INTEGER The leading dimension of the arrays A, AF. LDA >= max(M,N).``` [in] B ``` B is COMPLEX array, dimension (LDB,P) The N-by-P matrix A.``` [out] BF ` BF is COMPLEX array, dimension (LDB,P)` [in] LDB ``` LDB is INTEGER The leading dimension of the arrays B, BF. LDB >= max(P,N).``` [in] D ``` D is COMPLEX array, dimension( N ) On input, the left hand side of the GLM.``` [out] DF ` DF is COMPLEX array, dimension( N )` [out] X ``` X is COMPLEX array, dimension( M ) solution vector X in the GLM problem.``` [out] U ``` U is COMPLEX array, dimension( P ) solution vector U in the GLM problem.``` [out] WORK ` WORK is COMPLEX array, dimension (LWORK)` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK.``` [out] RWORK ` RWORK is REAL array, dimension (M)` [out] RESULT ``` RESULT is REAL The test ratio: norm( d - A*x - B*u ) RESULT = ----------------------------------------- (norm(A)+norm(B))*(norm(x)+norm(u))*EPS```

Definition at line 148 of file cglmts.f.

150 *
151 * -- LAPACK test routine --
152 * -- LAPACK is a software package provided by Univ. of Tennessee, --
153 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
154 *
155 * .. Scalar Arguments ..
156  INTEGER LDA, LDB, LWORK, M, P, N
157  REAL RESULT
158 * ..
159 * .. Array Arguments ..
160  REAL RWORK( * )
161  COMPLEX A( LDA, * ), AF( LDA, * ), B( LDB, * ),
162  \$ BF( LDB, * ), D( * ), DF( * ), U( * ),
163  \$ WORK( LWORK ), X( * )
164 *
165 * ====================================================================
166 *
167 * .. Parameters ..
168  REAL ZERO
169  parameter( zero = 0.0e+0 )
170  COMPLEX CONE
171  parameter( cone = 1.0e+0 )
172 * ..
173 * .. Local Scalars ..
174  INTEGER INFO
175  REAL ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL
176 * ..
177 * .. External Functions ..
178  REAL SCASUM, SLAMCH, CLANGE
179  EXTERNAL scasum, slamch, clange
180 * ..
181 * .. External Subroutines ..
182  EXTERNAL clacpy
183 *
184 * .. Intrinsic Functions ..
185  INTRINSIC max
186 * ..
187 * .. Executable Statements ..
188 *
189  eps = slamch( 'Epsilon' )
190  unfl = slamch( 'Safe minimum' )
191  anorm = max( clange( '1', n, m, a, lda, rwork ), unfl )
192  bnorm = max( clange( '1', n, p, b, ldb, rwork ), unfl )
193 *
194 * Copy the matrices A and B to the arrays AF and BF,
195 * and the vector D the array DF.
196 *
197  CALL clacpy( 'Full', n, m, a, lda, af, lda )
198  CALL clacpy( 'Full', n, p, b, ldb, bf, ldb )
199  CALL ccopy( n, d, 1, df, 1 )
200 *
201 * Solve GLM problem
202 *
203  CALL cggglm( n, m, p, af, lda, bf, ldb, df, x, u, work, lwork,
204  \$ info )
205 *
206 * Test the residual for the solution of LSE
207 *
208 * norm( d - A*x - B*u )
209 * RESULT = -----------------------------------------
210 * (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
211 *
212  CALL ccopy( n, d, 1, df, 1 )
213  CALL cgemv( 'No transpose', n, m, -cone, a, lda, x, 1, cone,
214  \$ df, 1 )
215 *
216  CALL cgemv( 'No transpose', n, p, -cone, b, ldb, u, 1, cone,
217  \$ df, 1 )
218 *
219  dnorm = scasum( n, df, 1 )
220  xnorm = scasum( m, x, 1 ) + scasum( p, u, 1 )
221  ynorm = anorm + bnorm
222 *
223  IF( xnorm.LE.zero ) THEN
224  result = zero
225  ELSE
226  result = ( ( dnorm / ynorm ) / xnorm ) /eps
227  END IF
228 *
229  RETURN
230 *
231 * End of CGLMTS
232 *
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:81
subroutine cgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CGEMV
Definition: cgemv.f:158
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:115
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cggglm(N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, INFO)
CGGGLM
Definition: cggglm.f:185
real function scasum(N, CX, INCX)
SCASUM
Definition: scasum.f:72
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: