128 $ info, work, rwork )
137 INTEGER n, lda, ldaf, info
140 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
141 REAL c( * ), rwork( * )
148 REAL ainvnm, anorm, tmp
164 INTRINSIC abs, max, real, aimag
170 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
177 upper =
lsame( uplo,
'U' )
178 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
180 ELSE IF( n.LT.0 )
THEN
182 ELSE IF( lda.LT.max( 1, n ) )
THEN
184 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
188 CALL xerbla(
'CLA_PORCOND_C', -info )
192 IF (
lsame( uplo,
'U' ) ) up = .true.
202 tmp = tmp + cabs1( a( j, i ) ) / c( j )
205 tmp = tmp + cabs1( a( i, j ) ) / c( j )
209 tmp = tmp + cabs1( a( j, i ) )
212 tmp = tmp + cabs1( a( i, j ) )
216 anorm = max( anorm, tmp )
223 tmp = tmp + cabs1( a( i, j ) ) / c( j )
226 tmp = tmp + cabs1( a( j, i ) ) / c( j )
230 tmp = tmp + cabs1( a( i, j ) )
233 tmp = tmp + cabs1( a( j, i ) )
237 anorm = max( anorm, tmp )
246 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
256 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
263 work( i ) = work( i ) * rwork( i )
267 CALL cpotrs(
'U', n, 1, af, ldaf,
270 CALL cpotrs(
'L', n, 1, af, ldaf,
278 work( i ) = work( i ) * c( i )
287 work( i ) = work( i ) * c( i )
292 CALL cpotrs(
'U', n, 1, af, ldaf,
295 CALL cpotrs(
'L', n, 1, af, ldaf,
302 work( i ) = work( i ) * rwork( i )
310 IF( ainvnm .NE. 0.0e+0 )
real function cla_porcond_c(uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork)
CLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positiv...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
subroutine cpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
CPOTRS