129 $ info, work, rwork )
138 INTEGER n, lda, ldaf, info
141 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
142 REAL c( * ), rwork( * )
149 REAL ainvnm, anorm, tmp
165 INTRINSIC abs, max, real, aimag
171 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
178 upper =
lsame( uplo,
'U' )
179 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
181 ELSE IF( n.LT.0 )
THEN
183 ELSE IF( lda.LT.max( 1, n ) )
THEN
185 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
189 CALL xerbla(
'CLA_PORCOND_C', -info )
193 IF (
lsame( uplo,
'U' ) ) up = .true.
203 tmp = tmp + cabs1( a( j, i ) ) / c( j )
206 tmp = tmp + cabs1( a( i, j ) ) / c( j )
210 tmp = tmp + cabs1( a( j, i ) )
213 tmp = tmp + cabs1( a( i, j ) )
217 anorm = max( anorm, tmp )
224 tmp = tmp + cabs1( a( i, j ) ) / c( j )
227 tmp = tmp + cabs1( a( j, i ) ) / c( j )
231 tmp = tmp + cabs1( a( i, j ) )
234 tmp = tmp + cabs1( a( j, i ) )
238 anorm = max( anorm, tmp )
247 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
257 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
264 work( i ) = work( i ) * rwork( i )
268 CALL cpotrs(
'U', n, 1, af, ldaf,
271 CALL cpotrs(
'L', n, 1, af, ldaf,
279 work( i ) = work( i ) * c( i )
288 work( i ) = work( i ) * c( i )
293 CALL cpotrs(
'U', n, 1, af, ldaf,
296 CALL cpotrs(
'L', n, 1, af, ldaf,
303 work( i ) = work( i ) * rwork( i )
311 IF( ainvnm .NE. 0.0e+0 )
subroutine xerbla(srname, info)
real function cla_porcond_c(uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork)
CLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positiv...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME
subroutine cpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
CPOTRS