LAPACK 3.12.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ slasq1()

 subroutine slasq1 ( integer n, real, dimension( * ) d, real, dimension( * ) e, real, dimension( * ) work, integer info )

SLASQ1 computes the singular values of a real square bidiagonal matrix. Used by sbdsqr.

Purpose:
``` SLASQ1 computes the singular values of a real N-by-N bidiagonal
matrix with diagonal D and off-diagonal E. The singular values
are computed to high relative accuracy, in the absence of
denormalization, underflow and overflow. The algorithm was first
presented in

"Accurate singular values and differential qd algorithms" by K. V.
Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
1994,

and the present implementation is described in "An implementation of
the dqds Algorithm (Positive Case)", LAPACK Working Note.```
Parameters
 [in] N ``` N is INTEGER The number of rows and columns in the matrix. N >= 0.``` [in,out] D ``` D is REAL array, dimension (N) On entry, D contains the diagonal elements of the bidiagonal matrix whose SVD is desired. On normal exit, D contains the singular values in decreasing order.``` [in,out] E ``` E is REAL array, dimension (N) On entry, elements E(1:N-1) contain the off-diagonal elements of the bidiagonal matrix whose SVD is desired. On exit, E is overwritten.``` [out] WORK ` WORK is REAL array, dimension (4*N)` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: the algorithm failed = 1, a split was marked by a positive value in E = 2, current block of Z not diagonalized after 100*N iterations (in inner while loop) On exit D and E represent a matrix with the same singular values which the calling subroutine could use to finish the computation, or even feed back into SLASQ1 = 3, termination criterion of outer while loop not met (program created more than N unreduced blocks)```

Definition at line 107 of file slasq1.f.

108*
109* -- LAPACK computational routine --
110* -- LAPACK is a software package provided by Univ. of Tennessee, --
111* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112*
113* .. Scalar Arguments ..
114 INTEGER INFO, N
115* ..
116* .. Array Arguments ..
117 REAL D( * ), E( * ), WORK( * )
118* ..
119*
120* =====================================================================
121*
122* .. Parameters ..
123 REAL ZERO
124 parameter( zero = 0.0e0 )
125* ..
126* .. Local Scalars ..
127 INTEGER I, IINFO
128 REAL EPS, SCALE, SAFMIN, SIGMN, SIGMX
129* ..
130* .. External Subroutines ..
131 EXTERNAL scopy, slas2, slascl, slasq2, slasrt, xerbla
132* ..
133* .. External Functions ..
134 REAL SLAMCH
135 EXTERNAL slamch
136* ..
137* .. Intrinsic Functions ..
138 INTRINSIC abs, max, sqrt
139* ..
140* .. Executable Statements ..
141*
142 info = 0
143 IF( n.LT.0 ) THEN
144 info = -1
145 CALL xerbla( 'SLASQ1', -info )
146 RETURN
147 ELSE IF( n.EQ.0 ) THEN
148 RETURN
149 ELSE IF( n.EQ.1 ) THEN
150 d( 1 ) = abs( d( 1 ) )
151 RETURN
152 ELSE IF( n.EQ.2 ) THEN
153 CALL slas2( d( 1 ), e( 1 ), d( 2 ), sigmn, sigmx )
154 d( 1 ) = sigmx
155 d( 2 ) = sigmn
156 RETURN
157 END IF
158*
159* Estimate the largest singular value.
160*
161 sigmx = zero
162 DO 10 i = 1, n - 1
163 d( i ) = abs( d( i ) )
164 sigmx = max( sigmx, abs( e( i ) ) )
165 10 CONTINUE
166 d( n ) = abs( d( n ) )
167*
168* Early return if SIGMX is zero (matrix is already diagonal).
169*
170 IF( sigmx.EQ.zero ) THEN
171 CALL slasrt( 'D', n, d, iinfo )
172 RETURN
173 END IF
174*
175 DO 20 i = 1, n
176 sigmx = max( sigmx, d( i ) )
177 20 CONTINUE
178*
179* Copy D and E into WORK (in the Z format) and scale (squaring the
180* input data makes scaling by a power of the radix pointless).
181*
182 eps = slamch( 'Precision' )
183 safmin = slamch( 'Safe minimum' )
184 scale = sqrt( eps / safmin )
185 CALL scopy( n, d, 1, work( 1 ), 2 )
186 CALL scopy( n-1, e, 1, work( 2 ), 2 )
187 CALL slascl( 'G', 0, 0, sigmx, scale, 2*n-1, 1, work, 2*n-1,
188 \$ iinfo )
189*
190* Compute the q's and e's.
191*
192 DO 30 i = 1, 2*n - 1
193 work( i ) = work( i )**2
194 30 CONTINUE
195 work( 2*n ) = zero
196*
197 CALL slasq2( n, work, info )
198*
199 IF( info.EQ.0 ) THEN
200 DO 40 i = 1, n
201 d( i ) = sqrt( work( i ) )
202 40 CONTINUE
203 CALL slascl( 'G', 0, 0, scale, sigmx, n, 1, d, n, iinfo )
204 ELSE IF( info.EQ.2 ) THEN
205*
206* Maximum number of iterations exceeded. Move data from WORK
207* into D and E so the calling subroutine can try to finish
208*
209 DO i = 1, n
210 d( i ) = sqrt( work( 2*i-1 ) )
211 e( i ) = sqrt( work( 2*i ) )
212 END DO
213 CALL slascl( 'G', 0, 0, scale, sigmx, n, 1, d, n, iinfo )
214 CALL slascl( 'G', 0, 0, scale, sigmx, n, 1, e, n, iinfo )
215 END IF
216*
217 RETURN
218*
219* End of SLASQ1
220*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine slas2(f, g, h, ssmin, ssmax)
SLAS2 computes singular values of a 2-by-2 triangular matrix.
Definition slas2.f:105
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:143
subroutine slasq2(n, z, info)
SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated ...
Definition slasq2.f:112
subroutine slasrt(id, n, d, info)
SLASRT sorts numbers in increasing or decreasing order.
Definition slasrt.f:88
Here is the call graph for this function:
Here is the caller graph for this function: