172 SUBROUTINE sla_geamv( TRANS, M, N, ALPHA, A, LDA, X, INCX,
182 INTEGER INCX, INCY, LDA, M, N, TRANS
185 REAL A( LDA, * ), X( * ), Y( * )
192 PARAMETER ( ONE = 1.0e+0, zero = 0.0e+0 )
197 INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY
208 INTRINSIC max, abs, sign
215 IF ( .NOT.( ( trans.EQ.ilatrans(
'N' ) )
216 $ .OR. ( trans.EQ.ilatrans(
'T' ) )
217 $ .OR. ( trans.EQ.ilatrans(
'C' )) ) )
THEN
219 ELSE IF( m.LT.0 )
THEN
221 ELSE IF( n.LT.0 )
THEN
223 ELSE IF( lda.LT.max( 1, m ) )
THEN
225 ELSE IF( incx.EQ.0 )
THEN
227 ELSE IF( incy.EQ.0 )
THEN
231 CALL xerbla(
'SLA_GEAMV ', info )
237 IF( ( m.EQ.0 ).OR.( n.EQ.0 ).OR.
238 $ ( ( alpha.EQ.zero ).AND.( beta.EQ.one ) ) )
244 IF( trans.EQ.ilatrans(
'N' ) )
THEN
254 kx = 1 - ( lenx - 1 )*incx
259 ky = 1 - ( leny - 1 )*incy
265 safe1 = slamch(
'Safe minimum' )
275 IF ( incx.EQ.1 )
THEN
276 IF( trans.EQ.ilatrans(
'N' ) )
THEN
278 IF ( beta .EQ. zero )
THEN
281 ELSE IF ( y( iy ) .EQ. zero )
THEN
285 y( iy ) = beta * abs( y( iy ) )
287 IF ( alpha .NE. zero )
THEN
289 temp = abs( a( i, j ) )
290 symb_zero = symb_zero .AND.
291 $ ( x( j ) .EQ. zero .OR. temp .EQ. zero )
293 y( iy ) = y( iy ) + alpha*abs( x( j ) )*temp
297 IF ( .NOT.symb_zero )
298 $ y( iy ) = y( iy ) + sign( safe1, y( iy ) )
304 IF ( beta .EQ. zero )
THEN
307 ELSE IF ( y( iy ) .EQ. zero )
THEN
311 y( iy ) = beta * abs( y( iy ) )
313 IF ( alpha .NE. zero )
THEN
315 temp = abs( a( j, i ) )
316 symb_zero = symb_zero .AND.
317 $ ( x( j ) .EQ. zero .OR. temp .EQ. zero )
319 y( iy ) = y( iy ) + alpha*abs( x( j ) )*temp
323 IF ( .NOT.symb_zero )
324 $ y( iy ) = y( iy ) + sign( safe1, y( iy ) )
330 IF( trans.EQ.ilatrans(
'N' ) )
THEN
332 IF ( beta .EQ. zero )
THEN
335 ELSE IF ( y( iy ) .EQ. zero )
THEN
339 y( iy ) = beta * abs( y( iy ) )
341 IF ( alpha .NE. zero )
THEN
344 temp = abs( a( i, j ) )
345 symb_zero = symb_zero .AND.
346 $ ( x( jx ) .EQ. zero .OR. temp .EQ. zero )
348 y( iy ) = y( iy ) + alpha*abs( x( jx ) )*temp
354 $ y( iy ) = y( iy ) + sign( safe1, y( iy ) )
360 IF ( beta .EQ. zero )
THEN
363 ELSE IF ( y( iy ) .EQ. zero )
THEN
367 y( iy ) = beta * abs( y( iy ) )
369 IF ( alpha .NE. zero )
THEN
372 temp = abs( a( j, i ) )
373 symb_zero = symb_zero .AND.
374 $ ( x( jx ) .EQ. zero .OR. temp .EQ. zero )
376 y( iy ) = y( iy ) + alpha*abs( x( jx ) )*temp
382 $ y( iy ) = y( iy ) + sign( safe1, y( iy ) )
subroutine sla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
SLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.