122
123
124
125
126
127
128 CHARACTER*1 UPLO
129 INTEGER N, INFO, LDA, LDAF
130
131
132 COMPLEX*16 A( LDA, * ), AF( LDAF, * )
133 DOUBLE PRECISION WORK( * )
134 INTEGER IPIV( * )
135
136
137
138
139
140 INTEGER NCOLS, I, J, K, KP
141 DOUBLE PRECISION AMAX, UMAX, RPVGRW, TMP
142 LOGICAL UPPER
143 COMPLEX*16 ZDUM
144
145
146 INTRINSIC abs, real, dimag, max, min
147
148
150 LOGICAL LSAME
151
152
153 DOUBLE PRECISION CABS1
154
155
156 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
157
158
159
160 upper =
lsame(
'Upper', uplo )
161 IF ( info.EQ.0 ) THEN
162 IF ( upper ) THEN
163 ncols = 1
164 ELSE
165 ncols = n
166 END IF
167 ELSE
168 ncols = info
169 END IF
170
171 rpvgrw = 1.0d+0
172 DO i = 1, 2*n
173 work( i ) = 0.0d+0
174 END DO
175
176
177
178
179
180 IF ( upper ) THEN
181 DO j = 1, n
182 DO i = 1, j
183 work( n+i ) = max( cabs1( a( i, j ) ), work( n+i ) )
184 work( n+j ) = max( cabs1( a( i, j ) ), work( n+j ) )
185 END DO
186 END DO
187 ELSE
188 DO j = 1, n
189 DO i = j, n
190 work( n+i ) = max( cabs1( a( i, j ) ), work( n+i ) )
191 work( n+j ) = max( cabs1( a( i, j ) ), work( n+j ) )
192 END DO
193 END DO
194 END IF
195
196
197
198
199
200
201
202
203 IF ( upper ) THEN
204 k = n
205 DO WHILE ( k .LT. ncols .AND. k.GT.0 )
206 IF ( ipiv( k ).GT.0 ) THEN
207
208 kp = ipiv( k )
209 IF ( kp .NE. k ) THEN
210 tmp = work( n+k )
211 work( n+k ) = work( n+kp )
212 work( n+kp ) = tmp
213 END IF
214 DO i = 1, k
215 work( k ) = max( cabs1( af( i, k ) ), work( k ) )
216 END DO
217 k = k - 1
218 ELSE
219
220 kp = -ipiv( k )
221 tmp = work( n+k-1 )
222 work( n+k-1 ) = work( n+kp )
223 work( n+kp ) = tmp
224 DO i = 1, k-1
225 work( k ) = max( cabs1( af( i, k ) ), work( k ) )
226 work( k-1 ) =
227 $ max( cabs1( af( i, k-1 ) ), work( k-1 ) )
228 END DO
229 work( k ) = max( cabs1( af( k, k ) ), work( k ) )
230 k = k - 2
231 END IF
232 END DO
233 k = ncols
234 DO WHILE ( k .LE. n )
235 IF ( ipiv( k ).GT.0 ) THEN
236 kp = ipiv( k )
237 IF ( kp .NE. k ) THEN
238 tmp = work( n+k )
239 work( n+k ) = work( n+kp )
240 work( n+kp ) = tmp
241 END IF
242 k = k + 1
243 ELSE
244 kp = -ipiv( k )
245 tmp = work( n+k )
246 work( n+k ) = work( n+kp )
247 work( n+kp ) = tmp
248 k = k + 2
249 END IF
250 END DO
251 ELSE
252 k = 1
253 DO WHILE ( k .LE. ncols )
254 IF ( ipiv( k ).GT.0 ) THEN
255
256 kp = ipiv( k )
257 IF ( kp .NE. k ) THEN
258 tmp = work( n+k )
259 work( n+k ) = work( n+kp )
260 work( n+kp ) = tmp
261 END IF
262 DO i = k, n
263 work( k ) = max( cabs1( af( i, k ) ), work( k ) )
264 END DO
265 k = k + 1
266 ELSE
267
268 kp = -ipiv( k )
269 tmp = work( n+k+1 )
270 work( n+k+1 ) = work( n+kp )
271 work( n+kp ) = tmp
272 DO i = k+1, n
273 work( k ) = max( cabs1( af( i, k ) ), work( k ) )
274 work( k+1 ) =
275 $ max( cabs1( af( i, k+1 ) ), work( k+1 ) )
276 END DO
277 work( k ) = max( cabs1( af( k, k ) ), work( k ) )
278 k = k + 2
279 END IF
280 END DO
281 k = ncols
282 DO WHILE ( k .GE. 1 )
283 IF ( ipiv( k ).GT.0 ) THEN
284 kp = ipiv( k )
285 IF ( kp .NE. k ) THEN
286 tmp = work( n+k )
287 work( n+k ) = work( n+kp )
288 work( n+kp ) = tmp
289 END IF
290 k = k - 1
291 ELSE
292 kp = -ipiv( k )
293 tmp = work( n+k )
294 work( n+k ) = work( n+kp )
295 work( n+kp ) = tmp
296 k = k - 2
297 ENDIF
298 END DO
299 END IF
300
301
302
303
304
305
306
307
308 IF ( upper ) THEN
309 DO i = ncols, n
310 umax = work( i )
311 amax = work( n+i )
312 IF ( umax /= 0.0d+0 ) THEN
313 rpvgrw = min( amax / umax, rpvgrw )
314 END IF
315 END DO
316 ELSE
317 DO i = 1, ncols
318 umax = work( i )
319 amax = work( n+i )
320 IF ( umax /= 0.0d+0 ) THEN
321 rpvgrw = min( amax / umax, rpvgrw )
322 END IF
323 END DO
324 END IF
325
327
328
329
double precision function zla_syrpvgrw(uplo, n, info, a, lda, af, ldaf, ipiv, work)
ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite m...
logical function lsame(ca, cb)
LSAME