LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
slarzb.f
Go to the documentation of this file.
1*> \brief \b SLARZB applies a block reflector or its transpose to a general matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLARZB + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarzb.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarzb.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarzb.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
22* LDV, T, LDT, C, LDC, WORK, LDWORK )
23*
24* .. Scalar Arguments ..
25* CHARACTER DIRECT, SIDE, STOREV, TRANS
26* INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
27* ..
28* .. Array Arguments ..
29* REAL C( LDC, * ), T( LDT, * ), V( LDV, * ),
30* $ WORK( LDWORK, * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> SLARZB applies a real block reflector H or its transpose H**T to
40*> a real distributed M-by-N C from the left or the right.
41*>
42*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] SIDE
49*> \verbatim
50*> SIDE is CHARACTER*1
51*> = 'L': apply H or H**T from the Left
52*> = 'R': apply H or H**T from the Right
53*> \endverbatim
54*>
55*> \param[in] TRANS
56*> \verbatim
57*> TRANS is CHARACTER*1
58*> = 'N': apply H (No transpose)
59*> = 'C': apply H**T (Transpose)
60*> \endverbatim
61*>
62*> \param[in] DIRECT
63*> \verbatim
64*> DIRECT is CHARACTER*1
65*> Indicates how H is formed from a product of elementary
66*> reflectors
67*> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
68*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
69*> \endverbatim
70*>
71*> \param[in] STOREV
72*> \verbatim
73*> STOREV is CHARACTER*1
74*> Indicates how the vectors which define the elementary
75*> reflectors are stored:
76*> = 'C': Columnwise (not supported yet)
77*> = 'R': Rowwise
78*> \endverbatim
79*>
80*> \param[in] M
81*> \verbatim
82*> M is INTEGER
83*> The number of rows of the matrix C.
84*> \endverbatim
85*>
86*> \param[in] N
87*> \verbatim
88*> N is INTEGER
89*> The number of columns of the matrix C.
90*> \endverbatim
91*>
92*> \param[in] K
93*> \verbatim
94*> K is INTEGER
95*> The order of the matrix T (= the number of elementary
96*> reflectors whose product defines the block reflector).
97*> \endverbatim
98*>
99*> \param[in] L
100*> \verbatim
101*> L is INTEGER
102*> The number of columns of the matrix V containing the
103*> meaningful part of the Householder reflectors.
104*> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
105*> \endverbatim
106*>
107*> \param[in] V
108*> \verbatim
109*> V is REAL array, dimension (LDV,NV).
110*> If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
111*> \endverbatim
112*>
113*> \param[in] LDV
114*> \verbatim
115*> LDV is INTEGER
116*> The leading dimension of the array V.
117*> If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
118*> \endverbatim
119*>
120*> \param[in] T
121*> \verbatim
122*> T is REAL array, dimension (LDT,K)
123*> The triangular K-by-K matrix T in the representation of the
124*> block reflector.
125*> \endverbatim
126*>
127*> \param[in] LDT
128*> \verbatim
129*> LDT is INTEGER
130*> The leading dimension of the array T. LDT >= K.
131*> \endverbatim
132*>
133*> \param[in,out] C
134*> \verbatim
135*> C is REAL array, dimension (LDC,N)
136*> On entry, the M-by-N matrix C.
137*> On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
138*> \endverbatim
139*>
140*> \param[in] LDC
141*> \verbatim
142*> LDC is INTEGER
143*> The leading dimension of the array C. LDC >= max(1,M).
144*> \endverbatim
145*>
146*> \param[out] WORK
147*> \verbatim
148*> WORK is REAL array, dimension (LDWORK,K)
149*> \endverbatim
150*>
151*> \param[in] LDWORK
152*> \verbatim
153*> LDWORK is INTEGER
154*> The leading dimension of the array WORK.
155*> If SIDE = 'L', LDWORK >= max(1,N);
156*> if SIDE = 'R', LDWORK >= max(1,M).
157*> \endverbatim
158*
159* Authors:
160* ========
161*
162*> \author Univ. of Tennessee
163*> \author Univ. of California Berkeley
164*> \author Univ. of Colorado Denver
165*> \author NAG Ltd.
166*
167*> \ingroup larzb
168*
169*> \par Contributors:
170* ==================
171*>
172*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
173*
174*> \par Further Details:
175* =====================
176*>
177*> \verbatim
178*> \endverbatim
179*>
180* =====================================================================
181 SUBROUTINE slarzb( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
182 $ LDV, T, LDT, C, LDC, WORK, LDWORK )
183*
184* -- LAPACK computational routine --
185* -- LAPACK is a software package provided by Univ. of Tennessee, --
186* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
187*
188* .. Scalar Arguments ..
189 CHARACTER DIRECT, SIDE, STOREV, TRANS
190 INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
191* ..
192* .. Array Arguments ..
193 REAL C( LDC, * ), T( LDT, * ), V( LDV, * ),
194 $ work( ldwork, * )
195* ..
196*
197* =====================================================================
198*
199* .. Parameters ..
200 REAL ONE
201 parameter( one = 1.0e+0 )
202* ..
203* .. Local Scalars ..
204 CHARACTER TRANST
205 INTEGER I, INFO, J
206* ..
207* .. External Functions ..
208 LOGICAL LSAME
209 EXTERNAL lsame
210* ..
211* .. External Subroutines ..
212 EXTERNAL scopy, sgemm, strmm, xerbla
213* ..
214* .. Executable Statements ..
215*
216* Quick return if possible
217*
218 IF( m.LE.0 .OR. n.LE.0 )
219 $ RETURN
220*
221* Check for currently supported options
222*
223 info = 0
224 IF( .NOT.lsame( direct, 'B' ) ) THEN
225 info = -3
226 ELSE IF( .NOT.lsame( storev, 'R' ) ) THEN
227 info = -4
228 END IF
229 IF( info.NE.0 ) THEN
230 CALL xerbla( 'SLARZB', -info )
231 RETURN
232 END IF
233*
234 IF( lsame( trans, 'N' ) ) THEN
235 transt = 'T'
236 ELSE
237 transt = 'N'
238 END IF
239*
240 IF( lsame( side, 'L' ) ) THEN
241*
242* Form H * C or H**T * C
243*
244* W( 1:n, 1:k ) = C( 1:k, 1:n )**T
245*
246 DO 10 j = 1, k
247 CALL scopy( n, c( j, 1 ), ldc, work( 1, j ), 1 )
248 10 CONTINUE
249*
250* W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
251* C( m-l+1:m, 1:n )**T * V( 1:k, 1:l )**T
252*
253 IF( l.GT.0 )
254 $ CALL sgemm( 'Transpose', 'Transpose', n, k, l, one,
255 $ c( m-l+1, 1 ), ldc, v, ldv, one, work, ldwork )
256*
257* W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T or W( 1:m, 1:k ) * T
258*
259 CALL strmm( 'Right', 'Lower', transt, 'Non-unit', n, k, one, t,
260 $ ldt, work, ldwork )
261*
262* C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**T
263*
264 DO 30 j = 1, n
265 DO 20 i = 1, k
266 c( i, j ) = c( i, j ) - work( j, i )
267 20 CONTINUE
268 30 CONTINUE
269*
270* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
271* V( 1:k, 1:l )**T * W( 1:n, 1:k )**T
272*
273 IF( l.GT.0 )
274 $ CALL sgemm( 'Transpose', 'Transpose', l, n, k, -one, v, ldv,
275 $ work, ldwork, one, c( m-l+1, 1 ), ldc )
276*
277 ELSE IF( lsame( side, 'R' ) ) THEN
278*
279* Form C * H or C * H**T
280*
281* W( 1:m, 1:k ) = C( 1:m, 1:k )
282*
283 DO 40 j = 1, k
284 CALL scopy( m, c( 1, j ), 1, work( 1, j ), 1 )
285 40 CONTINUE
286*
287* W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
288* C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**T
289*
290 IF( l.GT.0 )
291 $ CALL sgemm( 'No transpose', 'Transpose', m, k, l, one,
292 $ c( 1, n-l+1 ), ldc, v, ldv, one, work, ldwork )
293*
294* W( 1:m, 1:k ) = W( 1:m, 1:k ) * T or W( 1:m, 1:k ) * T**T
295*
296 CALL strmm( 'Right', 'Lower', trans, 'Non-unit', m, k, one, t,
297 $ ldt, work, ldwork )
298*
299* C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
300*
301 DO 60 j = 1, k
302 DO 50 i = 1, m
303 c( i, j ) = c( i, j ) - work( i, j )
304 50 CONTINUE
305 60 CONTINUE
306*
307* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
308* W( 1:m, 1:k ) * V( 1:k, 1:l )
309*
310 IF( l.GT.0 )
311 $ CALL sgemm( 'No transpose', 'No transpose', m, l, k, -one,
312 $ work, ldwork, v, ldv, one, c( 1, n-l+1 ), ldc )
313*
314 END IF
315*
316 RETURN
317*
318* End of SLARZB
319*
320 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
subroutine slarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work, ldwork)
SLARZB applies a block reflector or its transpose to a general matrix.
Definition slarzb.f:183
subroutine strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
STRMM
Definition strmm.f:177