76
77
78
79
80
81
82 INTEGER KNT, LMAX, NINFO
83 REAL RMAX
84
85
86
87
88
89 REAL ZERO, ONE
90 parameter( zero = 0.0e0, one = 1.0e0 )
91 REAL TWO, FOUR
92 parameter( two = 2.0e0, four = 4.0e0 )
93
94
95 INTEGER I1, I2, I3, I4, IM1, IM2, IM3, IM4, J1, J2, J3
96 REAL BIGNUM, CS, EPS, RES, SMLNUM, SN, SUM, TNRM,
97 $ WI1, WI2, WR1, WR2
98
99
100 REAL Q( 2, 2 ), T( 2, 2 ), T1( 2, 2 ), T2( 2, 2 ),
101 $ VAL( 4 ), VM( 3 )
102
103
104 REAL SLAMCH
106
107
109
110
111 INTRINSIC abs, max, sign
112
113
114
115
116
118 smlnum =
slamch(
'S' ) / eps
119 bignum = one / smlnum
120 CALL slabad( smlnum, bignum )
121
122
123
124 val( 1 ) = one
125 val( 2 ) = one + two*eps
126 val( 3 ) = two
127 val( 4 ) = two - four*eps
128 vm( 1 ) = smlnum
129 vm( 2 ) = one
130 vm( 3 ) = bignum
131
132 knt = 0
133 ninfo = 0
134 lmax = 0
135 rmax = zero
136
137
138
139 DO 150 i1 = 1, 4
140 DO 140 i2 = 1, 4
141 DO 130 i3 = 1, 4
142 DO 120 i4 = 1, 4
143 DO 110 im1 = 1, 3
144 DO 100 im2 = 1, 3
145 DO 90 im3 = 1, 3
146 DO 80 im4 = 1, 3
147 t( 1, 1 ) = val( i1 )*vm( im1 )
148 t( 1, 2 ) = val( i2 )*vm( im2 )
149 t( 2, 1 ) = -val( i3 )*vm( im3 )
150 t( 2, 2 ) = val( i4 )*vm( im4 )
151 tnrm = max( abs( t( 1, 1 ) ),
152 $ abs( t( 1, 2 ) ), abs( t( 2, 1 ) ),
153 $ abs( t( 2, 2 ) ) )
154 t1( 1, 1 ) = t( 1, 1 )
155 t1( 1, 2 ) = t( 1, 2 )
156 t1( 2, 1 ) = t( 2, 1 )
157 t1( 2, 2 ) = t( 2, 2 )
158 q( 1, 1 ) = one
159 q( 1, 2 ) = zero
160 q( 2, 1 ) = zero
161 q( 2, 2 ) = one
162
163 CALL slanv2( t( 1, 1 ), t( 1, 2 ),
164 $ t( 2, 1 ), t( 2, 2 ), wr1,
165 $ wi1, wr2, wi2, cs, sn )
166 DO 10 j1 = 1, 2
167 res = q( j1, 1 )*cs + q( j1, 2 )*sn
168 q( j1, 2 ) = -q( j1, 1 )*sn +
169 $ q( j1, 2 )*cs
170 q( j1, 1 ) = res
171 10 CONTINUE
172
173 res = zero
174 res = res + abs( q( 1, 1 )**2+
175 $ q( 1, 2 )**2-one ) / eps
176 res = res + abs( q( 2, 2 )**2+
177 $ q( 2, 1 )**2-one ) / eps
178 res = res + abs( q( 1, 1 )*q( 2, 1 )+
179 $ q( 1, 2 )*q( 2, 2 ) ) / eps
180 DO 40 j1 = 1, 2
181 DO 30 j2 = 1, 2
182 t2( j1, j2 ) = zero
183 DO 20 j3 = 1, 2
184 t2( j1, j2 ) = t2( j1, j2 ) +
185 $ t1( j1, j3 )*
186 $ q( j3, j2 )
187 20 CONTINUE
188 30 CONTINUE
189 40 CONTINUE
190 DO 70 j1 = 1, 2
191 DO 60 j2 = 1, 2
192 sum = t( j1, j2 )
193 DO 50 j3 = 1, 2
194 sum = sum - q( j3, j1 )*
195 $ t2( j3, j2 )
196 50 CONTINUE
197 res = res + abs( sum ) / eps / tnrm
198 60 CONTINUE
199 70 CONTINUE
200 IF( t( 2, 1 ).NE.zero .AND.
201 $ ( t( 1, 1 ).NE.t( 2,
202 $ 2 ) .OR. sign( one, t( 1,
203 $ 2 ) )*sign( one, t( 2,
204 $ 1 ) ).GT.zero ) )res = res + one / eps
205 knt = knt + 1
206 IF( res.GT.rmax ) THEN
207 lmax = knt
208 rmax = res
209 END IF
210 80 CONTINUE
211 90 CONTINUE
212 100 CONTINUE
213 110 CONTINUE
214 120 CONTINUE
215 130 CONTINUE
216 140 CONTINUE
217 150 CONTINUE
218
219 RETURN
220
221
222
subroutine slabad(SMALL, LARGE)
SLABAD
subroutine slanv2(A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN)
SLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
real function slamch(CMACH)
SLAMCH