LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine sget53 | ( | real, dimension( lda, * ) | a, |
integer | lda, | ||
real, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
real | scale, | ||
real | wr, | ||
real | wi, | ||
real | result, | ||
integer | info ) |
SGET53
!> !> SGET53 checks the generalized eigenvalues computed by SLAG2. !> !> The basic test for an eigenvalue is: !> !> | det( s A - w B ) | !> RESULT = --------------------------------------------------- !> ulp max( s norm(A), |w| norm(B) )*norm( s A - w B ) !> !> Two are performed: !> !> (1) ulp*max( s*norm(A), |w|*norm(B) ) must be at least !> safe_minimum. This insures that the test performed is !> not essentially det(0*A + 0*B)=0. !> !> (2) s*norm(A) + |w|*norm(B) must be less than 1/safe_minimum. !> This insures that s*A - w*B will not overflow. !> !> If these tests are not passed, then s and w are scaled and !> tested anyway, if this is possible. !>
[in] | A | !> A is REAL array, dimension (LDA, 2) !> The 2x2 matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 2. !> |
[in] | B | !> B is REAL array, dimension (LDB, N) !> The 2x2 upper-triangular matrix B. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of B. It must be at least 2. !> |
[in] | SCALE | !> SCALE is REAL !> The s in the formula s A - w B . It is !> assumed to be non-negative. !> |
[in] | WR | !> WR is REAL !> The real part of the eigenvalue w in the formula !> s A - w B . !> |
[in] | WI | !> WI is REAL !> The imaginary part of the eigenvalue w in the formula !> s A - w B . !> |
[out] | RESULT | !> RESULT is REAL !> If INFO is 2 or less, the value computed by the test !> described above. !> If INFO=3, this will just be 1/ulp. !> |
[out] | INFO | !> INFO is INTEGER !> =0: The input data pass the . !> =1: s*norm(A) + |w|*norm(B) > 1/safe_minimum. !> =2: ulp*max( s*norm(A), |w|*norm(B) ) < safe_minimum !> =3: same as INFO=2, but s and w could not be scaled so !> as to compute the test. !> |
Definition at line 125 of file sget53.f.