LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dsygs2.f
Go to the documentation of this file.
1*> \brief \b DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DSYGS2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygs2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygs2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygs2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER UPLO
25* INTEGER INFO, ITYPE, LDA, LDB, N
26* ..
27* .. Array Arguments ..
28* DOUBLE PRECISION A( LDA, * ), B( LDB, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> DSYGS2 reduces a real symmetric-definite generalized eigenproblem
38*> to standard form.
39*>
40*> If ITYPE = 1, the problem is A*x = lambda*B*x,
41*> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
42*>
43*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
44*> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
45*>
46*> B must have been previously factorized as U**T *U or L*L**T by DPOTRF.
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] ITYPE
53*> \verbatim
54*> ITYPE is INTEGER
55*> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
56*> = 2 or 3: compute U*A*U**T or L**T *A*L.
57*> \endverbatim
58*>
59*> \param[in] UPLO
60*> \verbatim
61*> UPLO is CHARACTER*1
62*> Specifies whether the upper or lower triangular part of the
63*> symmetric matrix A is stored, and how B has been factorized.
64*> = 'U': Upper triangular
65*> = 'L': Lower triangular
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*> N is INTEGER
71*> The order of the matrices A and B. N >= 0.
72*> \endverbatim
73*>
74*> \param[in,out] A
75*> \verbatim
76*> A is DOUBLE PRECISION array, dimension (LDA,N)
77*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
78*> n by n upper triangular part of A contains the upper
79*> triangular part of the matrix A, and the strictly lower
80*> triangular part of A is not referenced. If UPLO = 'L', the
81*> leading n by n lower triangular part of A contains the lower
82*> triangular part of the matrix A, and the strictly upper
83*> triangular part of A is not referenced.
84*>
85*> On exit, if INFO = 0, the transformed matrix, stored in the
86*> same format as A.
87*> \endverbatim
88*>
89*> \param[in] LDA
90*> \verbatim
91*> LDA is INTEGER
92*> The leading dimension of the array A. LDA >= max(1,N).
93*> \endverbatim
94*>
95*> \param[in] B
96*> \verbatim
97*> B is DOUBLE PRECISION array, dimension (LDB,N)
98*> The triangular factor from the Cholesky factorization of B,
99*> as returned by DPOTRF.
100*> \endverbatim
101*>
102*> \param[in] LDB
103*> \verbatim
104*> LDB is INTEGER
105*> The leading dimension of the array B. LDB >= max(1,N).
106*> \endverbatim
107*>
108*> \param[out] INFO
109*> \verbatim
110*> INFO is INTEGER
111*> = 0: successful exit.
112*> < 0: if INFO = -i, the i-th argument had an illegal value.
113*> \endverbatim
114*
115* Authors:
116* ========
117*
118*> \author Univ. of Tennessee
119*> \author Univ. of California Berkeley
120*> \author Univ. of Colorado Denver
121*> \author NAG Ltd.
122*
123*> \ingroup hegs2
124*
125* =====================================================================
126 SUBROUTINE dsygs2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
127*
128* -- LAPACK computational routine --
129* -- LAPACK is a software package provided by Univ. of Tennessee, --
130* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
131*
132* .. Scalar Arguments ..
133 CHARACTER UPLO
134 INTEGER INFO, ITYPE, LDA, LDB, N
135* ..
136* .. Array Arguments ..
137 DOUBLE PRECISION A( LDA, * ), B( LDB, * )
138* ..
139*
140* =====================================================================
141*
142* .. Parameters ..
143 DOUBLE PRECISION ONE, HALF
144 parameter( one = 1.0d0, half = 0.5d0 )
145* ..
146* .. Local Scalars ..
147 LOGICAL UPPER
148 INTEGER K
149 DOUBLE PRECISION AKK, BKK, CT
150* ..
151* .. External Subroutines ..
152 EXTERNAL daxpy, dscal, dsyr2, dtrmv, dtrsv, xerbla
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC max
156* ..
157* .. External Functions ..
158 LOGICAL LSAME
159 EXTERNAL lsame
160* ..
161* .. Executable Statements ..
162*
163* Test the input parameters.
164*
165 info = 0
166 upper = lsame( uplo, 'U' )
167 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
168 info = -1
169 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
170 info = -2
171 ELSE IF( n.LT.0 ) THEN
172 info = -3
173 ELSE IF( lda.LT.max( 1, n ) ) THEN
174 info = -5
175 ELSE IF( ldb.LT.max( 1, n ) ) THEN
176 info = -7
177 END IF
178 IF( info.NE.0 ) THEN
179 CALL xerbla( 'DSYGS2', -info )
180 RETURN
181 END IF
182*
183 IF( itype.EQ.1 ) THEN
184 IF( upper ) THEN
185*
186* Compute inv(U**T)*A*inv(U)
187*
188 DO 10 k = 1, n
189*
190* Update the upper triangle of A(k:n,k:n)
191*
192 akk = a( k, k )
193 bkk = b( k, k )
194 akk = akk / bkk**2
195 a( k, k ) = akk
196 IF( k.LT.n ) THEN
197 CALL dscal( n-k, one / bkk, a( k, k+1 ), lda )
198 ct = -half*akk
199 CALL daxpy( n-k, ct, b( k, k+1 ), ldb, a( k, k+1 ),
200 $ lda )
201 CALL dsyr2( uplo, n-k, -one, a( k, k+1 ), lda,
202 $ b( k, k+1 ), ldb, a( k+1, k+1 ), lda )
203 CALL daxpy( n-k, ct, b( k, k+1 ), ldb, a( k, k+1 ),
204 $ lda )
205 CALL dtrsv( uplo, 'Transpose', 'Non-unit', n-k,
206 $ b( k+1, k+1 ), ldb, a( k, k+1 ), lda )
207 END IF
208 10 CONTINUE
209 ELSE
210*
211* Compute inv(L)*A*inv(L**T)
212*
213 DO 20 k = 1, n
214*
215* Update the lower triangle of A(k:n,k:n)
216*
217 akk = a( k, k )
218 bkk = b( k, k )
219 akk = akk / bkk**2
220 a( k, k ) = akk
221 IF( k.LT.n ) THEN
222 CALL dscal( n-k, one / bkk, a( k+1, k ), 1 )
223 ct = -half*akk
224 CALL daxpy( n-k, ct, b( k+1, k ), 1, a( k+1, k ), 1 )
225 CALL dsyr2( uplo, n-k, -one, a( k+1, k ), 1,
226 $ b( k+1, k ), 1, a( k+1, k+1 ), lda )
227 CALL daxpy( n-k, ct, b( k+1, k ), 1, a( k+1, k ), 1 )
228 CALL dtrsv( uplo, 'No transpose', 'Non-unit', n-k,
229 $ b( k+1, k+1 ), ldb, a( k+1, k ), 1 )
230 END IF
231 20 CONTINUE
232 END IF
233 ELSE
234 IF( upper ) THEN
235*
236* Compute U*A*U**T
237*
238 DO 30 k = 1, n
239*
240* Update the upper triangle of A(1:k,1:k)
241*
242 akk = a( k, k )
243 bkk = b( k, k )
244 CALL dtrmv( uplo, 'No transpose', 'Non-unit', k-1, b,
245 $ ldb, a( 1, k ), 1 )
246 ct = half*akk
247 CALL daxpy( k-1, ct, b( 1, k ), 1, a( 1, k ), 1 )
248 CALL dsyr2( uplo, k-1, one, a( 1, k ), 1, b( 1, k ), 1,
249 $ a, lda )
250 CALL daxpy( k-1, ct, b( 1, k ), 1, a( 1, k ), 1 )
251 CALL dscal( k-1, bkk, a( 1, k ), 1 )
252 a( k, k ) = akk*bkk**2
253 30 CONTINUE
254 ELSE
255*
256* Compute L**T *A*L
257*
258 DO 40 k = 1, n
259*
260* Update the lower triangle of A(1:k,1:k)
261*
262 akk = a( k, k )
263 bkk = b( k, k )
264 CALL dtrmv( uplo, 'Transpose', 'Non-unit', k-1, b, ldb,
265 $ a( k, 1 ), lda )
266 ct = half*akk
267 CALL daxpy( k-1, ct, b( k, 1 ), ldb, a( k, 1 ), lda )
268 CALL dsyr2( uplo, k-1, one, a( k, 1 ), lda, b( k, 1 ),
269 $ ldb, a, lda )
270 CALL daxpy( k-1, ct, b( k, 1 ), ldb, a( k, 1 ), lda )
271 CALL dscal( k-1, bkk, a( k, 1 ), lda )
272 a( k, k ) = akk*bkk**2
273 40 CONTINUE
274 END IF
275 END IF
276 RETURN
277*
278* End of DSYGS2
279*
280 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine daxpy(n, da, dx, incx, dy, incy)
DAXPY
Definition daxpy.f:89
subroutine dsygs2(itype, uplo, n, a, lda, b, ldb, info)
DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorizatio...
Definition dsygs2.f:127
subroutine dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)
DSYR2
Definition dsyr2.f:147
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dtrmv(uplo, trans, diag, n, a, lda, x, incx)
DTRMV
Definition dtrmv.f:147
subroutine dtrsv(uplo, trans, diag, n, a, lda, x, incx)
DTRSV
Definition dtrsv.f:143