LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dpbcon()

subroutine dpbcon ( character uplo,
integer n,
integer kd,
double precision, dimension( ldab, * ) ab,
integer ldab,
double precision anorm,
double precision rcond,
double precision, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

DPBCON

Download DPBCON + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DPBCON estimates the reciprocal of the condition number (in the
!> 1-norm) of a real symmetric positive definite band matrix using the
!> Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF.
!>
!> An estimate is obtained for norm(inv(A)), and the reciprocal of the
!> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangular factor stored in AB;
!>          = 'L':  Lower triangular factor stored in AB.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]KD
!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 
[in]AB
!>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
!>          The triangular factor U or L from the Cholesky factorization
!>          A = U**T*U or A = L*L**T of the band matrix A, stored in the
!>          first KD+1 rows of the array.  The j-th column of U or L is
!>          stored in the j-th column of the array AB as follows:
!>          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD+1.
!> 
[in]ANORM
!>          ANORM is DOUBLE PRECISION
!>          The 1-norm (or infinity-norm) of the symmetric band matrix A.
!> 
[out]RCOND
!>          RCOND is DOUBLE PRECISION
!>          The reciprocal of the condition number of the matrix A,
!>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
!>          estimate of the 1-norm of inv(A) computed in this routine.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (3*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 128 of file dpbcon.f.

130*
131* -- LAPACK computational routine --
132* -- LAPACK is a software package provided by Univ. of Tennessee, --
133* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
134*
135* .. Scalar Arguments ..
136 CHARACTER UPLO
137 INTEGER INFO, KD, LDAB, N
138 DOUBLE PRECISION ANORM, RCOND
139* ..
140* .. Array Arguments ..
141 INTEGER IWORK( * )
142 DOUBLE PRECISION AB( LDAB, * ), WORK( * )
143* ..
144*
145* =====================================================================
146*
147* .. Parameters ..
148 DOUBLE PRECISION ONE, ZERO
149 parameter( one = 1.0d+0, zero = 0.0d+0 )
150* ..
151* .. Local Scalars ..
152 LOGICAL UPPER
153 CHARACTER NORMIN
154 INTEGER IX, KASE
155 DOUBLE PRECISION AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
156* ..
157* .. Local Arrays ..
158 INTEGER ISAVE( 3 )
159* ..
160* .. External Functions ..
161 LOGICAL LSAME
162 INTEGER IDAMAX
163 DOUBLE PRECISION DLAMCH
164 EXTERNAL lsame, idamax, dlamch
165* ..
166* .. External Subroutines ..
167 EXTERNAL dlacn2, dlatbs, drscl, xerbla
168* ..
169* .. Intrinsic Functions ..
170 INTRINSIC abs
171* ..
172* .. Executable Statements ..
173*
174* Test the input parameters.
175*
176 info = 0
177 upper = lsame( uplo, 'U' )
178 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
179 info = -1
180 ELSE IF( n.LT.0 ) THEN
181 info = -2
182 ELSE IF( kd.LT.0 ) THEN
183 info = -3
184 ELSE IF( ldab.LT.kd+1 ) THEN
185 info = -5
186 ELSE IF( anorm.LT.zero ) THEN
187 info = -6
188 END IF
189 IF( info.NE.0 ) THEN
190 CALL xerbla( 'DPBCON', -info )
191 RETURN
192 END IF
193*
194* Quick return if possible
195*
196 rcond = zero
197 IF( n.EQ.0 ) THEN
198 rcond = one
199 RETURN
200 ELSE IF( anorm.EQ.zero ) THEN
201 RETURN
202 END IF
203*
204 smlnum = dlamch( 'Safe minimum' )
205*
206* Estimate the 1-norm of the inverse.
207*
208 kase = 0
209 normin = 'N'
210 10 CONTINUE
211 CALL dlacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
212 IF( kase.NE.0 ) THEN
213 IF( upper ) THEN
214*
215* Multiply by inv(U**T).
216*
217 CALL dlatbs( 'Upper', 'Transpose', 'Non-unit', normin, n,
218 $ kd, ab, ldab, work, scalel, work( 2*n+1 ),
219 $ info )
220 normin = 'Y'
221*
222* Multiply by inv(U).
223*
224 CALL dlatbs( 'Upper', 'No transpose', 'Non-unit', normin,
225 $ n,
226 $ kd, ab, ldab, work, scaleu, work( 2*n+1 ),
227 $ info )
228 ELSE
229*
230* Multiply by inv(L).
231*
232 CALL dlatbs( 'Lower', 'No transpose', 'Non-unit', normin,
233 $ n,
234 $ kd, ab, ldab, work, scalel, work( 2*n+1 ),
235 $ info )
236 normin = 'Y'
237*
238* Multiply by inv(L**T).
239*
240 CALL dlatbs( 'Lower', 'Transpose', 'Non-unit', normin, n,
241 $ kd, ab, ldab, work, scaleu, work( 2*n+1 ),
242 $ info )
243 END IF
244*
245* Multiply by 1/SCALE if doing so will not cause overflow.
246*
247 scale = scalel*scaleu
248 IF( scale.NE.one ) THEN
249 ix = idamax( n, work, 1 )
250 IF( scale.LT.abs( work( ix ) )*smlnum .OR. scale.EQ.zero )
251 $ GO TO 20
252 CALL drscl( n, scale, work, 1 )
253 END IF
254 GO TO 10
255 END IF
256*
257* Compute the estimate of the reciprocal condition number.
258*
259 IF( ainvnm.NE.zero )
260 $ rcond = ( one / ainvnm ) / anorm
261*
262 20 CONTINUE
263*
264 RETURN
265*
266* End of DPBCON
267*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function idamax(n, dx, incx)
IDAMAX
Definition idamax.f:71
subroutine dlacn2(n, v, x, isgn, est, kase, isave)
DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition dlacn2.f:134
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
subroutine dlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
DLATBS solves a triangular banded system of equations.
Definition dlatbs.f:241
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine drscl(n, sa, sx, incx)
DRSCL multiplies a vector by the reciprocal of a real scalar.
Definition drscl.f:82
Here is the call graph for this function:
Here is the caller graph for this function: