134 $ LDAF, IPIV, X, INFO,
143 INTEGER n, lda, ldaf, info
147 COMPLEX*16 a( lda, * ), af( ldaf, * ), work( * ), x( * )
148 DOUBLE PRECISION rwork( * )
156 DOUBLE PRECISION ainvnm, anorm, tmp
171 INTRINSIC abs, max, real, dimag
174 DOUBLE PRECISION cabs1
177 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
184 notrans =
lsame( trans,
'N' )
185 IF ( .NOT. notrans .AND. .NOT.
lsame( trans,
'T' ) .AND. .NOT.
186 $
lsame( trans,
'C' ) )
THEN
188 ELSE IF( n.LT.0 )
THEN
190 ELSE IF( lda.LT.max( 1, n ) )
THEN
192 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
196 CALL xerbla(
'ZLA_GERCOND_X', -info )
207 tmp = tmp + cabs1( a( i, j ) * x( j ) )
210 anorm = max( anorm, tmp )
216 tmp = tmp + cabs1( a( j, i ) * x( j ) )
219 anorm = max( anorm, tmp )
228 ELSE IF( anorm .EQ. 0.0d+0 )
THEN
238 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
243 work( i ) = work( i ) * rwork( i )
247 CALL zgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
250 CALL zgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
257 work( i ) = work( i ) / x( i )
264 work( i ) = work( i ) / x( i )
268 CALL zgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
271 CALL zgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
278 work( i ) = work( i ) * rwork( i )
286 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(srname, info)
subroutine zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
ZGETRS
double precision function zla_gercond_x(trans, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
ZLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME