LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zla_gercond_x.f
Go to the documentation of this file.
1*> \brief \b ZLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLA_GERCOND_X + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gercond_x.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gercond_x.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gercond_x.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* DOUBLE PRECISION FUNCTION ZLA_GERCOND_X( TRANS, N, A, LDA, AF,
22* LDAF, IPIV, X, INFO,
23* WORK, RWORK )
24*
25* .. Scalar Arguments ..
26* CHARACTER TRANS
27* INTEGER N, LDA, LDAF, INFO
28* ..
29* .. Array Arguments ..
30* INTEGER IPIV( * )
31* COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
32* DOUBLE PRECISION RWORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> ZLA_GERCOND_X computes the infinity norm condition number of
42*> op(A) * diag(X) where X is a COMPLEX*16 vector.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] TRANS
49*> \verbatim
50*> TRANS is CHARACTER*1
51*> Specifies the form of the system of equations:
52*> = 'N': A * X = B (No transpose)
53*> = 'T': A**T * X = B (Transpose)
54*> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
55*> \endverbatim
56*>
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The number of linear equations, i.e., the order of the
61*> matrix A. N >= 0.
62*> \endverbatim
63*>
64*> \param[in] A
65*> \verbatim
66*> A is COMPLEX*16 array, dimension (LDA,N)
67*> On entry, the N-by-N matrix A.
68*> \endverbatim
69*>
70*> \param[in] LDA
71*> \verbatim
72*> LDA is INTEGER
73*> The leading dimension of the array A. LDA >= max(1,N).
74*> \endverbatim
75*>
76*> \param[in] AF
77*> \verbatim
78*> AF is COMPLEX*16 array, dimension (LDAF,N)
79*> The factors L and U from the factorization
80*> A = P*L*U as computed by ZGETRF.
81*> \endverbatim
82*>
83*> \param[in] LDAF
84*> \verbatim
85*> LDAF is INTEGER
86*> The leading dimension of the array AF. LDAF >= max(1,N).
87*> \endverbatim
88*>
89*> \param[in] IPIV
90*> \verbatim
91*> IPIV is INTEGER array, dimension (N)
92*> The pivot indices from the factorization A = P*L*U
93*> as computed by ZGETRF; row i of the matrix was interchanged
94*> with row IPIV(i).
95*> \endverbatim
96*>
97*> \param[in] X
98*> \verbatim
99*> X is COMPLEX*16 array, dimension (N)
100*> The vector X in the formula op(A) * diag(X).
101*> \endverbatim
102*>
103*> \param[out] INFO
104*> \verbatim
105*> INFO is INTEGER
106*> = 0: Successful exit.
107*> i > 0: The ith argument is invalid.
108*> \endverbatim
109*>
110*> \param[out] WORK
111*> \verbatim
112*> WORK is COMPLEX*16 array, dimension (2*N).
113*> Workspace.
114*> \endverbatim
115*>
116*> \param[out] RWORK
117*> \verbatim
118*> RWORK is DOUBLE PRECISION array, dimension (N).
119*> Workspace.
120*> \endverbatim
121*
122* Authors:
123* ========
124*
125*> \author Univ. of Tennessee
126*> \author Univ. of California Berkeley
127*> \author Univ. of Colorado Denver
128*> \author NAG Ltd.
129*
130*> \ingroup la_gercond
131*
132* =====================================================================
133 DOUBLE PRECISION FUNCTION zla_gercond_x( TRANS, N, A, LDA, AF,
134 $ LDAF, IPIV, X, INFO,
135 $ WORK, RWORK )
136*
137* -- LAPACK computational routine --
138* -- LAPACK is a software package provided by Univ. of Tennessee, --
139* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140*
141* .. Scalar Arguments ..
142 CHARACTER trans
143 INTEGER n, lda, ldaf, info
144* ..
145* .. Array Arguments ..
146 INTEGER ipiv( * )
147 COMPLEX*16 a( lda, * ), af( ldaf, * ), work( * ), x( * )
148 DOUBLE PRECISION rwork( * )
149* ..
150*
151* =====================================================================
152*
153* .. Local Scalars ..
154 LOGICAL notrans
155 INTEGER kase
156 DOUBLE PRECISION ainvnm, anorm, tmp
157 INTEGER i, j
158 COMPLEX*16 zdum
159* ..
160* .. Local Arrays ..
161 INTEGER isave( 3 )
162* ..
163* .. External Functions ..
164 LOGICAL lsame
165 EXTERNAL lsame
166* ..
167* .. External Subroutines ..
168 EXTERNAL zlacn2, zgetrs, xerbla
169* ..
170* .. Intrinsic Functions ..
171 INTRINSIC abs, max, real, dimag
172* ..
173* .. Statement Functions ..
174 DOUBLE PRECISION cabs1
175* ..
176* .. Statement Function Definitions ..
177 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
178* ..
179* .. Executable Statements ..
180*
181 zla_gercond_x = 0.0d+0
182*
183 info = 0
184 notrans = lsame( trans, 'N' )
185 IF ( .NOT. notrans .AND. .NOT. lsame( trans, 'T' ) .AND. .NOT.
186 $ lsame( trans, 'C' ) ) THEN
187 info = -1
188 ELSE IF( n.LT.0 ) THEN
189 info = -2
190 ELSE IF( lda.LT.max( 1, n ) ) THEN
191 info = -4
192 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
193 info = -6
194 END IF
195 IF( info.NE.0 ) THEN
196 CALL xerbla( 'ZLA_GERCOND_X', -info )
197 RETURN
198 END IF
199*
200* Compute norm of op(A)*op2(C).
201*
202 anorm = 0.0d+0
203 IF ( notrans ) THEN
204 DO i = 1, n
205 tmp = 0.0d+0
206 DO j = 1, n
207 tmp = tmp + cabs1( a( i, j ) * x( j ) )
208 END DO
209 rwork( i ) = tmp
210 anorm = max( anorm, tmp )
211 END DO
212 ELSE
213 DO i = 1, n
214 tmp = 0.0d+0
215 DO j = 1, n
216 tmp = tmp + cabs1( a( j, i ) * x( j ) )
217 END DO
218 rwork( i ) = tmp
219 anorm = max( anorm, tmp )
220 END DO
221 END IF
222*
223* Quick return if possible.
224*
225 IF( n.EQ.0 ) THEN
226 zla_gercond_x = 1.0d+0
227 RETURN
228 ELSE IF( anorm .EQ. 0.0d+0 ) THEN
229 RETURN
230 END IF
231*
232* Estimate the norm of inv(op(A)).
233*
234 ainvnm = 0.0d+0
235*
236 kase = 0
237 10 CONTINUE
238 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
239 IF( kase.NE.0 ) THEN
240 IF( kase.EQ.2 ) THEN
241* Multiply by R.
242 DO i = 1, n
243 work( i ) = work( i ) * rwork( i )
244 END DO
245*
246 IF ( notrans ) THEN
247 CALL zgetrs( 'No transpose', n, 1, af, ldaf, ipiv,
248 $ work, n, info )
249 ELSE
250 CALL zgetrs( 'Conjugate transpose', n, 1, af, ldaf, ipiv,
251 $ work, n, info )
252 ENDIF
253*
254* Multiply by inv(X).
255*
256 DO i = 1, n
257 work( i ) = work( i ) / x( i )
258 END DO
259 ELSE
260*
261* Multiply by inv(X**H).
262*
263 DO i = 1, n
264 work( i ) = work( i ) / x( i )
265 END DO
266*
267 IF ( notrans ) THEN
268 CALL zgetrs( 'Conjugate transpose', n, 1, af, ldaf, ipiv,
269 $ work, n, info )
270 ELSE
271 CALL zgetrs( 'No transpose', n, 1, af, ldaf, ipiv,
272 $ work, n, info )
273 END IF
274*
275* Multiply by R.
276*
277 DO i = 1, n
278 work( i ) = work( i ) * rwork( i )
279 END DO
280 END IF
281 GO TO 10
282 END IF
283*
284* Compute the estimate of the reciprocal condition number.
285*
286 IF( ainvnm .NE. 0.0d+0 )
287 $ zla_gercond_x = 1.0d+0 / ainvnm
288*
289 RETURN
290*
291* End of ZLA_GERCOND_X
292*
293 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
ZGETRS
Definition zgetrs.f:121
double precision function zla_gercond_x(trans, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
ZLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition zlacn2.f:133
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48