LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dptts2()

subroutine dptts2 ( integer  n,
integer  nrhs,
double precision, dimension( * )  d,
double precision, dimension( * )  e,
double precision, dimension( ldb, * )  b,
integer  ldb 
)

DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.

Download DPTTS2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DPTTS2 solves a tridiagonal system of the form
    A * X = B
 using the L*D*L**T factorization of A computed by DPTTRF.  D is a
 diagonal matrix specified in the vector D, L is a unit bidiagonal
 matrix whose subdiagonal is specified in the vector E, and X and B
 are N by NRHS matrices.
Parameters
[in]N
          N is INTEGER
          The order of the tridiagonal matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          L*D*L**T factorization of A.
[in]E
          E is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of the unit bidiagonal factor
          L from the L*D*L**T factorization of A.  E can also be regarded
          as the superdiagonal of the unit bidiagonal factor U from the
          factorization A = U**T*D*U.
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side vectors B for the system of
          linear equations.
          On exit, the solution vectors, X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 101 of file dptts2.f.

102*
103* -- LAPACK computational routine --
104* -- LAPACK is a software package provided by Univ. of Tennessee, --
105* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
106*
107* .. Scalar Arguments ..
108 INTEGER LDB, N, NRHS
109* ..
110* .. Array Arguments ..
111 DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
112* ..
113*
114* =====================================================================
115*
116* .. Local Scalars ..
117 INTEGER I, J
118* ..
119* .. External Subroutines ..
120 EXTERNAL dscal
121* ..
122* .. Executable Statements ..
123*
124* Quick return if possible
125*
126 IF( n.LE.1 ) THEN
127 IF( n.EQ.1 )
128 $ CALL dscal( nrhs, 1.d0 / d( 1 ), b, ldb )
129 RETURN
130 END IF
131*
132* Solve A * X = B using the factorization A = L*D*L**T,
133* overwriting each right hand side vector with its solution.
134*
135 DO 30 j = 1, nrhs
136*
137* Solve L * x = b.
138*
139 DO 10 i = 2, n
140 b( i, j ) = b( i, j ) - b( i-1, j )*e( i-1 )
141 10 CONTINUE
142*
143* Solve D * L**T * x = b.
144*
145 b( n, j ) = b( n, j ) / d( n )
146 DO 20 i = n - 1, 1, -1
147 b( i, j ) = b( i, j ) / d( i ) - b( i+1, j )*e( i )
148 20 CONTINUE
149 30 CONTINUE
150*
151 RETURN
152*
153* End of DPTTS2
154*
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: