LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dptts2 | ( | integer | n, |
integer | nrhs, | ||
double precision, dimension( * ) | d, | ||
double precision, dimension( * ) | e, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb ) |
DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
Download DPTTS2 + dependencies [TGZ] [ZIP] [TXT]
!> !> DPTTS2 solves a tridiagonal system of the form !> A * X = B !> using the L*D*L**T factorization of A computed by DPTTRF. D is a !> diagonal matrix specified in the vector D, L is a unit bidiagonal !> matrix whose subdiagonal is specified in the vector E, and X and B !> are N by NRHS matrices. !>
[in] | N | !> N is INTEGER !> The order of the tridiagonal matrix A. N >= 0. !> |
[in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
[in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the diagonal matrix D from the !> L*D*L**T factorization of A. !> |
[in] | E | !> E is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) subdiagonal elements of the unit bidiagonal factor !> L from the L*D*L**T factorization of A. E can also be regarded !> as the superdiagonal of the unit bidiagonal factor U from the !> factorization A = U**T*D*U. !> |
[in,out] | B | !> B is DOUBLE PRECISION array, dimension (LDB,NRHS) !> On entry, the right hand side vectors B for the system of !> linear equations. !> On exit, the solution vectors, X. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
Definition at line 99 of file dptts2.f.