137 SUBROUTINE sgeqlf( M, N, A, LDA, TAU, WORK, LWORK, INFO )
144 INTEGER INFO, LDA, LWORK, M, N
147 REAL A( LDA, * ), TAU( * ), WORK( * )
154 INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
155 $ MU, NB, NBMIN, NU, NX
172 lquery = ( lwork.EQ.-1 )
175 ELSE IF( n.LT.0 )
THEN
177 ELSE IF( lda.LT.max( 1, m ) )
THEN
186 nb = ilaenv( 1,
'SGEQLF',
' ', m, n, -1, -1 )
191 IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery )
THEN
197 CALL xerbla(
'SGEQLF', -info )
199 ELSE IF( lquery )
THEN
212 IF( nb.GT.1 .AND. nb.LT.k )
THEN
216 nx = max( 0, ilaenv( 3,
'SGEQLF',
' ', m, n, -1, -1 ) )
223 IF( lwork.LT.iws )
THEN
229 nbmin = max( 2, ilaenv( 2,
'SGEQLF',
' ', m, n, -1,
235 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
240 ki = ( ( k-nx-1 ) / nb )*nb
243 DO 10 i = k - kk + ki + 1, k - kk + 1, -nb
244 ib = min( k-i+1, nb )
249 CALL sgeql2( m-k+i+ib-1, ib, a( 1, n-k+i ), lda, tau( i ),
251 IF( n-k+i.GT.1 )
THEN
256 CALL slarft(
'Backward',
'Columnwise', m-k+i+ib-1, ib,
257 $ a( 1, n-k+i ), lda, tau( i ), work, ldwork )
261 CALL slarfb(
'Left',
'Transpose',
'Backward',
262 $
'Columnwise', m-k+i+ib-1, n-k+i-1, ib,
263 $ a( 1, n-k+i ), lda, work, ldwork, a, lda,
264 $ work( ib+1 ), ldwork )
267 mu = m - k + i + nb - 1
268 nu = n - k + i + nb - 1
276 IF( mu.GT.0 .AND. nu.GT.0 )
277 $
CALL sgeql2( mu, nu, a, lda, tau, work, iinfo )
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine sgeql2(M, N, A, LDA, TAU, WORK, INFO)
SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
subroutine sgeqlf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
SGEQLF
subroutine slarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
SLARFB applies a block reflector or its transpose to a general rectangular matrix.
subroutine slarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
SLARFT forms the triangular factor T of a block reflector H = I - vtvH