LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
cla_hercond_c.f
Go to the documentation of this file.
1*> \brief \b CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefinite matrices.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CLA_HERCOND_C + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_hercond_c.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_hercond_c.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_hercond_c.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
20* CAPPLY, INFO, WORK, RWORK )
21*
22* .. Scalar Arguments ..
23* CHARACTER UPLO
24* LOGICAL CAPPLY
25* INTEGER N, LDA, LDAF, INFO
26* ..
27* .. Array Arguments ..
28* INTEGER IPIV( * )
29* COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * )
30* REAL C ( * ), RWORK( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> CLA_HERCOND_C computes the infinity norm condition number of
40*> op(A) * inv(diag(C)) where C is a REAL vector.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] UPLO
47*> \verbatim
48*> UPLO is CHARACTER*1
49*> = 'U': Upper triangle of A is stored;
50*> = 'L': Lower triangle of A is stored.
51*> \endverbatim
52*>
53*> \param[in] N
54*> \verbatim
55*> N is INTEGER
56*> The number of linear equations, i.e., the order of the
57*> matrix A. N >= 0.
58*> \endverbatim
59*>
60*> \param[in] A
61*> \verbatim
62*> A is COMPLEX array, dimension (LDA,N)
63*> On entry, the N-by-N matrix A
64*> \endverbatim
65*>
66*> \param[in] LDA
67*> \verbatim
68*> LDA is INTEGER
69*> The leading dimension of the array A. LDA >= max(1,N).
70*> \endverbatim
71*>
72*> \param[in] AF
73*> \verbatim
74*> AF is COMPLEX array, dimension (LDAF,N)
75*> The block diagonal matrix D and the multipliers used to
76*> obtain the factor U or L as computed by CHETRF.
77*> \endverbatim
78*>
79*> \param[in] LDAF
80*> \verbatim
81*> LDAF is INTEGER
82*> The leading dimension of the array AF. LDAF >= max(1,N).
83*> \endverbatim
84*>
85*> \param[in] IPIV
86*> \verbatim
87*> IPIV is INTEGER array, dimension (N)
88*> Details of the interchanges and the block structure of D
89*> as determined by CHETRF.
90*> \endverbatim
91*>
92*> \param[in] C
93*> \verbatim
94*> C is REAL array, dimension (N)
95*> The vector C in the formula op(A) * inv(diag(C)).
96*> \endverbatim
97*>
98*> \param[in] CAPPLY
99*> \verbatim
100*> CAPPLY is LOGICAL
101*> If .TRUE. then access the vector C in the formula above.
102*> \endverbatim
103*>
104*> \param[out] INFO
105*> \verbatim
106*> INFO is INTEGER
107*> = 0: Successful exit.
108*> i > 0: The ith argument is invalid.
109*> \endverbatim
110*>
111*> \param[out] WORK
112*> \verbatim
113*> WORK is COMPLEX array, dimension (2*N).
114*> Workspace.
115*> \endverbatim
116*>
117*> \param[out] RWORK
118*> \verbatim
119*> RWORK is REAL array, dimension (N).
120*> Workspace.
121*> \endverbatim
122*
123* Authors:
124* ========
125*
126*> \author Univ. of Tennessee
127*> \author Univ. of California Berkeley
128*> \author Univ. of Colorado Denver
129*> \author NAG Ltd.
130*
131*> \ingroup la_hercond
132*
133* =====================================================================
134 REAL function cla_hercond_c( uplo, n, a, lda, af, ldaf, ipiv,
135 $ c,
136 $ capply, info, work, rwork )
137*
138* -- LAPACK computational routine --
139* -- LAPACK is a software package provided by Univ. of Tennessee, --
140* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141*
142* .. Scalar Arguments ..
143 CHARACTER uplo
144 LOGICAL capply
145 INTEGER n, lda, ldaf, info
146* ..
147* .. Array Arguments ..
148 INTEGER ipiv( * )
149 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
150 REAL c ( * ), rwork( * )
151* ..
152*
153* =====================================================================
154*
155* .. Local Scalars ..
156 INTEGER kase, i, j
157 REAL ainvnm, anorm, tmp
158 LOGICAL up, upper
159 COMPLEX zdum
160* ..
161* .. Local Arrays ..
162 INTEGER isave( 3 )
163* ..
164* .. External Functions ..
165 LOGICAL lsame
166 EXTERNAL lsame
167* ..
168* .. External Subroutines ..
169 EXTERNAL clacn2, chetrs, xerbla
170* ..
171* .. Intrinsic Functions ..
172 INTRINSIC abs, max
173* ..
174* .. Statement Functions ..
175 REAL cabs1
176* ..
177* .. Statement Function Definitions ..
178 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
179* ..
180* .. Executable Statements ..
181*
182 cla_hercond_c = 0.0e+0
183*
184 info = 0
185 upper = lsame( uplo, 'U' )
186 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
187 info = -1
188 ELSE IF( n.LT.0 ) THEN
189 info = -2
190 ELSE IF( lda.LT.max( 1, n ) ) THEN
191 info = -4
192 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
193 info = -6
194 END IF
195 IF( info.NE.0 ) THEN
196 CALL xerbla( 'CLA_HERCOND_C', -info )
197 RETURN
198 END IF
199 up = .false.
200 IF ( lsame( uplo, 'U' ) ) up = .true.
201*
202* Compute norm of op(A)*op2(C).
203*
204 anorm = 0.0e+0
205 IF ( up ) THEN
206 DO i = 1, n
207 tmp = 0.0e+0
208 IF ( capply ) THEN
209 DO j = 1, i
210 tmp = tmp + cabs1( a( j, i ) ) / c( j )
211 END DO
212 DO j = i+1, n
213 tmp = tmp + cabs1( a( i, j ) ) / c( j )
214 END DO
215 ELSE
216 DO j = 1, i
217 tmp = tmp + cabs1( a( j, i ) )
218 END DO
219 DO j = i+1, n
220 tmp = tmp + cabs1( a( i, j ) )
221 END DO
222 END IF
223 rwork( i ) = tmp
224 anorm = max( anorm, tmp )
225 END DO
226 ELSE
227 DO i = 1, n
228 tmp = 0.0e+0
229 IF ( capply ) THEN
230 DO j = 1, i
231 tmp = tmp + cabs1( a( i, j ) ) / c( j )
232 END DO
233 DO j = i+1, n
234 tmp = tmp + cabs1( a( j, i ) ) / c( j )
235 END DO
236 ELSE
237 DO j = 1, i
238 tmp = tmp + cabs1( a( i, j ) )
239 END DO
240 DO j = i+1, n
241 tmp = tmp + cabs1( a( j, i ) )
242 END DO
243 END IF
244 rwork( i ) = tmp
245 anorm = max( anorm, tmp )
246 END DO
247 END IF
248*
249* Quick return if possible.
250*
251 IF( n.EQ.0 ) THEN
252 cla_hercond_c = 1.0e+0
253 RETURN
254 ELSE IF( anorm .EQ. 0.0e+0 ) THEN
255 RETURN
256 END IF
257*
258* Estimate the norm of inv(op(A)).
259*
260 ainvnm = 0.0e+0
261*
262 kase = 0
263 10 CONTINUE
264 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
265 IF( kase.NE.0 ) THEN
266 IF( kase.EQ.2 ) THEN
267*
268* Multiply by R.
269*
270 DO i = 1, n
271 work( i ) = work( i ) * rwork( i )
272 END DO
273*
274 IF ( up ) THEN
275 CALL chetrs( 'U', n, 1, af, ldaf, ipiv,
276 $ work, n, info )
277 ELSE
278 CALL chetrs( 'L', n, 1, af, ldaf, ipiv,
279 $ work, n, info )
280 ENDIF
281*
282* Multiply by inv(C).
283*
284 IF ( capply ) THEN
285 DO i = 1, n
286 work( i ) = work( i ) * c( i )
287 END DO
288 END IF
289 ELSE
290*
291* Multiply by inv(C**H).
292*
293 IF ( capply ) THEN
294 DO i = 1, n
295 work( i ) = work( i ) * c( i )
296 END DO
297 END IF
298*
299 IF ( up ) THEN
300 CALL chetrs( 'U', n, 1, af, ldaf, ipiv,
301 $ work, n, info )
302 ELSE
303 CALL chetrs( 'L', n, 1, af, ldaf, ipiv,
304 $ work, n, info )
305 END IF
306*
307* Multiply by R.
308*
309 DO i = 1, n
310 work( i ) = work( i ) * rwork( i )
311 END DO
312 END IF
313 GO TO 10
314 END IF
315*
316* Compute the estimate of the reciprocal condition number.
317*
318 IF( ainvnm .NE. 0.0e+0 )
319 $ cla_hercond_c = 1.0e+0 / ainvnm
320*
321 RETURN
322*
323* End of CLA_HERCOND_C
324*
325 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
Definition chetrs.f:118
real function cla_hercond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefin...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:131
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48