137 $ capply, info, work, rwork )
146 INTEGER n, lda, ldaf, info
150 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
151 REAL c ( * ), rwork( * )
158 REAL ainvnm, anorm, tmp
179 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
186 upper =
lsame( uplo,
'U' )
187 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
189 ELSE IF( n.LT.0 )
THEN
191 ELSE IF( lda.LT.max( 1, n ) )
THEN
193 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
197 CALL xerbla(
'CLA_HERCOND_C', -info )
201 IF (
lsame( uplo,
'U' ) ) up = .true.
211 tmp = tmp + cabs1( a( j, i ) ) / c( j )
214 tmp = tmp + cabs1( a( i, j ) ) / c( j )
218 tmp = tmp + cabs1( a( j, i ) )
221 tmp = tmp + cabs1( a( i, j ) )
225 anorm = max( anorm, tmp )
232 tmp = tmp + cabs1( a( i, j ) ) / c( j )
235 tmp = tmp + cabs1( a( j, i ) ) / c( j )
239 tmp = tmp + cabs1( a( i, j ) )
242 tmp = tmp + cabs1( a( j, i ) )
246 anorm = max( anorm, tmp )
255 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
265 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
272 work( i ) = work( i ) * rwork( i )
276 CALL chetrs(
'U', n, 1, af, ldaf, ipiv,
279 CALL chetrs(
'L', n, 1, af, ldaf, ipiv,
287 work( i ) = work( i ) * c( i )
296 work( i ) = work( i ) * c( i )
301 CALL chetrs(
'U', n, 1, af, ldaf, ipiv,
304 CALL chetrs(
'L', n, 1, af, ldaf, ipiv,
311 work( i ) = work( i ) * rwork( i )
319 IF( ainvnm .NE. 0.0e+0 )
subroutine xerbla(srname, info)
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
real function cla_hercond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefin...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME