136 $ capply, info, work, rwork )
145 INTEGER n, lda, ldaf, info
149 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
150 REAL c ( * ), rwork( * )
157 REAL ainvnm, anorm, tmp
178 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
185 upper =
lsame( uplo,
'U' )
186 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
188 ELSE IF( n.LT.0 )
THEN
190 ELSE IF( lda.LT.max( 1, n ) )
THEN
192 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
196 CALL xerbla(
'CLA_HERCOND_C', -info )
200 IF (
lsame( uplo,
'U' ) ) up = .true.
210 tmp = tmp + cabs1( a( j, i ) ) / c( j )
213 tmp = tmp + cabs1( a( i, j ) ) / c( j )
217 tmp = tmp + cabs1( a( j, i ) )
220 tmp = tmp + cabs1( a( i, j ) )
224 anorm = max( anorm, tmp )
231 tmp = tmp + cabs1( a( i, j ) ) / c( j )
234 tmp = tmp + cabs1( a( j, i ) ) / c( j )
238 tmp = tmp + cabs1( a( i, j ) )
241 tmp = tmp + cabs1( a( j, i ) )
245 anorm = max( anorm, tmp )
254 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
264 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
271 work( i ) = work( i ) * rwork( i )
275 CALL chetrs(
'U', n, 1, af, ldaf, ipiv,
278 CALL chetrs(
'L', n, 1, af, ldaf, ipiv,
286 work( i ) = work( i ) * c( i )
295 work( i ) = work( i ) * c( i )
300 CALL chetrs(
'U', n, 1, af, ldaf, ipiv,
303 CALL chetrs(
'L', n, 1, af, ldaf, ipiv,
310 work( i ) = work( i ) * rwork( i )
318 IF( ainvnm .NE. 0.0e+0 )
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
real function cla_hercond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefin...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...