LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine sbdt05 | ( | integer | m, |
integer | n, | ||
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( * ) | s, | ||
integer | ns, | ||
real, dimension( ldu, * ) | u, | ||
integer | ldu, | ||
real, dimension( ldvt, * ) | vt, | ||
integer | ldvt, | ||
real, dimension( * ) | work, | ||
real | resid ) |
SBDT05
!> !> SBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD: !> S = U' * B * V !> where U and V are orthogonal matrices and S is diagonal. !> !> The test ratio to test the singular value decomposition is !> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS ) !> where VT = V' and EPS is the machine precision. !>
[in] | M | !> M is INTEGER !> The number of rows of the matrices A and U. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrices A and VT. !> |
[in] | A | !> A is REAL array, dimension (LDA,N) !> The m by n matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[in] | S | !> S is REAL array, dimension (NS) !> The singular values from the (partial) SVD of B, sorted in !> decreasing order. !> |
[in] | NS | !> NS is INTEGER !> The number of singular values/vectors from the (partial) !> SVD of B. !> |
[in] | U | !> U is REAL array, dimension (LDU,NS) !> The n by ns orthogonal matrix U in S = U' * B * V. !> |
[in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,N) !> |
[in] | VT | !> VT is REAL array, dimension (LDVT,N) !> The n by ns orthogonal matrix V in S = U' * B * V. !> |
[in] | LDVT | !> LDVT is INTEGER !> The leading dimension of the array VT. !> |
[out] | WORK | !> WORK is REAL array, dimension (M,N) !> |
[out] | RESID | !> RESID is REAL !> The test ratio: norm(S - U' * A * V) / ( n * norm(A) * EPS ) !> |
Definition at line 125 of file sbdt05.f.