LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dtrtrs()

subroutine dtrtrs ( character uplo,
character trans,
character diag,
integer n,
integer nrhs,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( ldb, * ) b,
integer ldb,
integer info )

DTRTRS

Download DTRTRS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DTRTRS solves a triangular system of the form
!>
!>    A * X = B  or  A**T * X = B,
!>
!> where A is a triangular matrix of order N, and B is an N-by-NRHS matrix.
!>
!> This subroutine verifies that A is nonsingular, but callers should note that only exact
!> singularity is detected. It is conceivable for one or more diagonal elements of A to be
!> subnormally tiny numbers without this subroutine signalling an error.
!>
!> If a possible loss of numerical precision due to near-singular matrices is a concern, the
!> caller should verify that A is nonsingular within some tolerance before calling this subroutine.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  A is upper triangular;
!>          = 'L':  A is lower triangular.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations:
!>          = 'N':  A * X = B  (No transpose)
!>          = 'T':  A**T * X = B  (Transpose)
!>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          = 'N':  A is non-unit triangular;
!>          = 'U':  A is unit triangular.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of the array A contains the upper
!>          triangular matrix, and the strictly lower triangular part of
!>          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of the array A contains the lower triangular
!>          matrix, and the strictly upper triangular part of A is not
!>          referenced.  If DIAG = 'U', the diagonal elements of A are
!>          also not referenced and are assumed to be 1.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, if INFO = 0, the solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the i-th diagonal element of A is exactly zero,
!>               indicating that the matrix is singular and the solutions
!>               X have not been computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 142 of file dtrtrs.f.

144*
145* -- LAPACK computational routine --
146* -- LAPACK is a software package provided by Univ. of Tennessee, --
147* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
148*
149* .. Scalar Arguments ..
150 CHARACTER DIAG, TRANS, UPLO
151 INTEGER INFO, LDA, LDB, N, NRHS
152* ..
153* .. Array Arguments ..
154 DOUBLE PRECISION A( LDA, * ), B( LDB, * )
155* ..
156*
157* =====================================================================
158*
159* .. Parameters ..
160 DOUBLE PRECISION ZERO, ONE
161 parameter( zero = 0.0d+0, one = 1.0d+0 )
162* ..
163* .. Local Scalars ..
164 LOGICAL NOUNIT
165* ..
166* .. External Functions ..
167 LOGICAL LSAME
168 EXTERNAL lsame
169* ..
170* .. External Subroutines ..
171 EXTERNAL dtrsm, xerbla
172* ..
173* .. Intrinsic Functions ..
174 INTRINSIC max
175* ..
176* .. Executable Statements ..
177*
178* Test the input parameters.
179*
180 info = 0
181 nounit = lsame( diag, 'N' )
182 IF( .NOT.lsame( uplo, 'U' ) .AND.
183 $ .NOT.lsame( uplo, 'L' ) ) THEN
184 info = -1
185 ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.
186 $ lsame( trans, 'T' ) .AND.
187 $ .NOT.lsame( trans, 'C' ) ) THEN
188 info = -2
189 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
190 info = -3
191 ELSE IF( n.LT.0 ) THEN
192 info = -4
193 ELSE IF( nrhs.LT.0 ) THEN
194 info = -5
195 ELSE IF( lda.LT.max( 1, n ) ) THEN
196 info = -7
197 ELSE IF( ldb.LT.max( 1, n ) ) THEN
198 info = -9
199 END IF
200 IF( info.NE.0 ) THEN
201 CALL xerbla( 'DTRTRS', -info )
202 RETURN
203 END IF
204*
205* Quick return if possible
206*
207 IF( n.EQ.0 )
208 $ RETURN
209*
210* Check for singularity.
211*
212 IF( nounit ) THEN
213 DO 10 info = 1, n
214 IF( a( info, info ).EQ.zero )
215 $ RETURN
216 10 CONTINUE
217 END IF
218 info = 0
219*
220* Solve A * x = b or A**T * x = b.
221*
222 CALL dtrsm( 'Left', uplo, trans, diag, n, nrhs, one, a, lda, b,
223 $ ldb )
224*
225 RETURN
226*
227* End of DTRTRS
228*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
DTRSM
Definition dtrsm.f:181
Here is the call graph for this function:
Here is the caller graph for this function: