LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dtrtrs()

subroutine dtrtrs ( character  uplo,
character  trans,
character  diag,
integer  n,
integer  nrhs,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( ldb, * )  b,
integer  ldb,
integer  info 
)

DTRTRS

Download DTRTRS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DTRTRS solves a triangular system of the form

    A * X = B  or  A**T * X = B,

 where A is a triangular matrix of order N, and B is an N-by-NRHS
 matrix.  A check is made to verify that A is nonsingular.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B  (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
[in]DIAG
          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
          triangular part of the array A contains the lower triangular
          matrix, and the strictly upper triangular part of A is not
          referenced.  If DIAG = 'U', the diagonal elements of A are
          also not referenced and are assumed to be 1.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit, if INFO = 0, the solution matrix X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, the i-th diagonal element of A is zero,
               indicating that the matrix is singular and the solutions
               X have not been computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 138 of file dtrtrs.f.

140*
141* -- LAPACK computational routine --
142* -- LAPACK is a software package provided by Univ. of Tennessee, --
143* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
144*
145* .. Scalar Arguments ..
146 CHARACTER DIAG, TRANS, UPLO
147 INTEGER INFO, LDA, LDB, N, NRHS
148* ..
149* .. Array Arguments ..
150 DOUBLE PRECISION A( LDA, * ), B( LDB, * )
151* ..
152*
153* =====================================================================
154*
155* .. Parameters ..
156 DOUBLE PRECISION ZERO, ONE
157 parameter( zero = 0.0d+0, one = 1.0d+0 )
158* ..
159* .. Local Scalars ..
160 LOGICAL NOUNIT
161* ..
162* .. External Functions ..
163 LOGICAL LSAME
164 EXTERNAL lsame
165* ..
166* .. External Subroutines ..
167 EXTERNAL dtrsm, xerbla
168* ..
169* .. Intrinsic Functions ..
170 INTRINSIC max
171* ..
172* .. Executable Statements ..
173*
174* Test the input parameters.
175*
176 info = 0
177 nounit = lsame( diag, 'N' )
178 IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
179 info = -1
180 ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.
181 $ lsame( trans, 'T' ) .AND. .NOT.lsame( trans, 'C' ) ) THEN
182 info = -2
183 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
184 info = -3
185 ELSE IF( n.LT.0 ) THEN
186 info = -4
187 ELSE IF( nrhs.LT.0 ) THEN
188 info = -5
189 ELSE IF( lda.LT.max( 1, n ) ) THEN
190 info = -7
191 ELSE IF( ldb.LT.max( 1, n ) ) THEN
192 info = -9
193 END IF
194 IF( info.NE.0 ) THEN
195 CALL xerbla( 'DTRTRS', -info )
196 RETURN
197 END IF
198*
199* Quick return if possible
200*
201 IF( n.EQ.0 )
202 $ RETURN
203*
204* Check for singularity.
205*
206 IF( nounit ) THEN
207 DO 10 info = 1, n
208 IF( a( info, info ).EQ.zero )
209 $ RETURN
210 10 CONTINUE
211 END IF
212 info = 0
213*
214* Solve A * x = b or A**T * x = b.
215*
216 CALL dtrsm( 'Left', uplo, trans, diag, n, nrhs, one, a, lda, b,
217 $ ldb )
218*
219 RETURN
220*
221* End of DTRTRS
222*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
DTRSM
Definition dtrsm.f:181
Here is the call graph for this function:
Here is the caller graph for this function: