LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ clarcm()

 subroutine clarcm ( integer M, integer N, real, dimension( lda, * ) A, integer LDA, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( ldc, * ) C, integer LDC, real, dimension( * ) RWORK )

CLARCM copies all or part of a real two-dimensional array to a complex array.

Purpose:
CLARCM performs a very simple matrix-matrix multiplication:
C := A * B,
where A is M by M and real; B is M by N and complex;
C is M by N and complex.
Parameters
 [in] M M is INTEGER The number of rows of the matrix A and of the matrix C. M >= 0. [in] N N is INTEGER The number of columns and rows of the matrix B and the number of columns of the matrix C. N >= 0. [in] A A is REAL array, dimension (LDA, M) On entry, A contains the M by M matrix A. [in] LDA LDA is INTEGER The leading dimension of the array A. LDA >=max(1,M). [in] B B is COMPLEX array, dimension (LDB, N) On entry, B contains the M by N matrix B. [in] LDB LDB is INTEGER The leading dimension of the array B. LDB >=max(1,M). [out] C C is COMPLEX array, dimension (LDC, N) On exit, C contains the M by N matrix C. [in] LDC LDC is INTEGER The leading dimension of the array C. LDC >=max(1,M). [out] RWORK RWORK is REAL array, dimension (2*M*N)

Definition at line 113 of file clarcm.f.

114*
115* -- LAPACK auxiliary routine --
116* -- LAPACK is a software package provided by Univ. of Tennessee, --
117* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
118*
119* .. Scalar Arguments ..
120 INTEGER LDA, LDB, LDC, M, N
121* ..
122* .. Array Arguments ..
123 REAL A( LDA, * ), RWORK( * )
124 COMPLEX B( LDB, * ), C( LDC, * )
125* ..
126*
127* =====================================================================
128*
129* .. Parameters ..
130 REAL ONE, ZERO
131 parameter( one = 1.0e0, zero = 0.0e0 )
132* ..
133* .. Local Scalars ..
134 INTEGER I, J, L
135* ..
136* .. Intrinsic Functions ..
137 INTRINSIC aimag, cmplx, real
138* ..
139* .. External Subroutines ..
140 EXTERNAL sgemm
141* ..
142* .. Executable Statements ..
143*
144* Quick return if possible.
145*
146 IF( ( m.EQ.0 ) .OR. ( n.EQ.0 ) )
147 \$ RETURN
148*
149 DO 20 j = 1, n
150 DO 10 i = 1, m
151 rwork( ( j-1 )*m+i ) = real( b( i, j ) )
152 10 CONTINUE
153 20 CONTINUE
154*
155 l = m*n + 1
156 CALL sgemm( 'N', 'N', m, n, m, one, a, lda, rwork, m, zero,
157 \$ rwork( l ), m )
158 DO 40 j = 1, n
159 DO 30 i = 1, m
160 c( i, j ) = rwork( l+( j-1 )*m+i-1 )
161 30 CONTINUE
162 40 CONTINUE
163*
164 DO 60 j = 1, n
165 DO 50 i = 1, m
166 rwork( ( j-1 )*m+i ) = aimag( b( i, j ) )
167 50 CONTINUE
168 60 CONTINUE
169 CALL sgemm( 'N', 'N', m, n, m, one, a, lda, rwork, m, zero,
170 \$ rwork( l ), m )
171 DO 80 j = 1, n
172 DO 70 i = 1, m
173 c( i, j ) = cmplx( real( c( i, j ) ),
174 \$ rwork( l+( j-1 )*m+i-1 ) )
175 70 CONTINUE
176 80 CONTINUE
177*
178 RETURN
179*
180* End of CLARCM
181*
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:187
Here is the call graph for this function:
Here is the caller graph for this function: