LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine ctptri | ( | character | uplo, |
character | diag, | ||
integer | n, | ||
complex, dimension( * ) | ap, | ||
integer | info ) |
CTPTRI
Download CTPTRI + dependencies [TGZ] [ZIP] [TXT]
!> !> CTPTRI computes the inverse of a complex upper or lower triangular !> matrix A stored in packed format. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !> |
[in] | DIAG | !> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in,out] | AP | !> AP is COMPLEX array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangular matrix A, stored !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. !> See below for further details. !> On exit, the (triangular) inverse of the original matrix, in !> the same packed storage format. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, A(i,i) is exactly zero. The triangular !> matrix is singular and its inverse can not be computed. !> |
!> !> A triangular matrix A can be transferred to packed storage using one !> of the following program segments: !> !> UPLO = 'U': UPLO = 'L': !> !> JC = 1 JC = 1 !> DO 2 J = 1, N DO 2 J = 1, N !> DO 1 I = 1, J DO 1 I = J, N !> AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) !> 1 CONTINUE 1 CONTINUE !> JC = JC + J JC = JC + N - J + 1 !> 2 CONTINUE 2 CONTINUE !>
Definition at line 114 of file ctptri.f.