LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgetf2()

subroutine cgetf2 ( integer  M,
integer  N,
complex, dimension( lda, * )  A,
integer  LDA,
integer, dimension( * )  IPIV,
integer  INFO 
)

CGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).

Download CGETF2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CGETF2 computes an LU factorization of a general m-by-n matrix A
 using partial pivoting with row interchanges.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n).

 This is the right-looking Level 2 BLAS version of the algorithm.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix to be factored.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]IPIV
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, U(k,k) is exactly zero. The factorization
               has been completed, but the factor U is exactly
               singular, and division by zero will occur if it is used
               to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 107 of file cgetf2.f.

108*
109* -- LAPACK computational routine --
110* -- LAPACK is a software package provided by Univ. of Tennessee, --
111* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112*
113* .. Scalar Arguments ..
114 INTEGER INFO, LDA, M, N
115* ..
116* .. Array Arguments ..
117 INTEGER IPIV( * )
118 COMPLEX A( LDA, * )
119* ..
120*
121* =====================================================================
122*
123* .. Parameters ..
124 COMPLEX ONE, ZERO
125 parameter( one = ( 1.0e+0, 0.0e+0 ),
126 $ zero = ( 0.0e+0, 0.0e+0 ) )
127* ..
128* .. Local Scalars ..
129 REAL SFMIN
130 INTEGER I, J, JP
131* ..
132* .. External Functions ..
133 REAL SLAMCH
134 INTEGER ICAMAX
135 EXTERNAL slamch, icamax
136* ..
137* .. External Subroutines ..
138 EXTERNAL cgeru, cscal, cswap, xerbla
139* ..
140* .. Intrinsic Functions ..
141 INTRINSIC max, min
142* ..
143* .. Executable Statements ..
144*
145* Test the input parameters.
146*
147 info = 0
148 IF( m.LT.0 ) THEN
149 info = -1
150 ELSE IF( n.LT.0 ) THEN
151 info = -2
152 ELSE IF( lda.LT.max( 1, m ) ) THEN
153 info = -4
154 END IF
155 IF( info.NE.0 ) THEN
156 CALL xerbla( 'CGETF2', -info )
157 RETURN
158 END IF
159*
160* Quick return if possible
161*
162 IF( m.EQ.0 .OR. n.EQ.0 )
163 $ RETURN
164*
165* Compute machine safe minimum
166*
167 sfmin = slamch('S')
168*
169 DO 10 j = 1, min( m, n )
170*
171* Find pivot and test for singularity.
172*
173 jp = j - 1 + icamax( m-j+1, a( j, j ), 1 )
174 ipiv( j ) = jp
175 IF( a( jp, j ).NE.zero ) THEN
176*
177* Apply the interchange to columns 1:N.
178*
179 IF( jp.NE.j )
180 $ CALL cswap( n, a( j, 1 ), lda, a( jp, 1 ), lda )
181*
182* Compute elements J+1:M of J-th column.
183*
184 IF( j.LT.m ) THEN
185 IF( abs(a( j, j )) .GE. sfmin ) THEN
186 CALL cscal( m-j, one / a( j, j ), a( j+1, j ), 1 )
187 ELSE
188 DO 20 i = 1, m-j
189 a( j+i, j ) = a( j+i, j ) / a( j, j )
190 20 CONTINUE
191 END IF
192 END IF
193*
194 ELSE IF( info.EQ.0 ) THEN
195*
196 info = j
197 END IF
198*
199 IF( j.LT.min( m, n ) ) THEN
200*
201* Update trailing submatrix.
202*
203 CALL cgeru( m-j, n-j, -one, a( j+1, j ), 1, a( j, j+1 ),
204 $ lda, a( j+1, j+1 ), lda )
205 END IF
206 10 CONTINUE
207 RETURN
208*
209* End of CGETF2
210*
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
integer function icamax(N, CX, INCX)
ICAMAX
Definition: icamax.f:71
subroutine cswap(N, CX, INCX, CY, INCY)
CSWAP
Definition: cswap.f:81
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:78
subroutine cgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERU
Definition: cgeru.f:130
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: