LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zpbt05()

subroutine zpbt05 ( character uplo,
integer n,
integer kd,
integer nrhs,
complex*16, dimension( ldab, * ) ab,
integer ldab,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldx, * ) x,
integer ldx,
complex*16, dimension( ldxact, * ) xact,
integer ldxact,
double precision, dimension( * ) ferr,
double precision, dimension( * ) berr,
double precision, dimension( * ) reslts )

ZPBT05

Purpose:
!>
!> ZPBT05 tests the error bounds from iterative refinement for the
!> computed solution to a system of equations A*X = B, where A is a
!> Hermitian band matrix.
!>
!> RESLTS(1) = test of the error bound
!>           = norm(X - XACT) / ( norm(X) * FERR )
!>
!> A large value is returned if this ratio is not less than one.
!>
!> RESLTS(2) = residual from the iterative refinement routine
!>           = the maximum of BERR / ( NZ*EPS + (*) ), where
!>             (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
!>             and NZ = max. number of nonzeros in any row of A, plus 1
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          Hermitian matrix A is stored.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]N
!>          N is INTEGER
!>          The number of rows of the matrices X, B, and XACT, and the
!>          order of the matrix A.  N >= 0.
!> 
[in]KD
!>          KD is INTEGER
!>          The number of super-diagonals of the matrix A if UPLO = 'U',
!>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of columns of the matrices X, B, and XACT.
!>          NRHS >= 0.
!> 
[in]AB
!>          AB is COMPLEX*16 array, dimension (LDAB,N)
!>          The upper or lower triangle of the Hermitian band matrix A,
!>          stored in the first KD+1 rows of the array.  The j-th column
!>          of A is stored in the j-th column of the array AB as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD+1.
!> 
[in]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          The right hand side vectors for the system of linear
!>          equations.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in]X
!>          X is COMPLEX*16 array, dimension (LDX,NRHS)
!>          The computed solution vectors.  Each vector is stored as a
!>          column of the matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[in]XACT
!>          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
!>          The exact solution vectors.  Each vector is stored as a
!>          column of the matrix XACT.
!> 
[in]LDXACT
!>          LDXACT is INTEGER
!>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
!> 
[in]FERR
!>          FERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The estimated forward error bounds for each solution vector
!>          X.  If XTRUE is the true solution, FERR bounds the magnitude
!>          of the largest entry in (X - XTRUE) divided by the magnitude
!>          of the largest entry in X.
!> 
[in]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector (i.e., the smallest relative change in any entry of A
!>          or B that makes X an exact solution).
!> 
[out]RESLTS
!>          RESLTS is DOUBLE PRECISION array, dimension (2)
!>          The maximum over the NRHS solution vectors of the ratios:
!>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
!>          RESLTS(2) = BERR / ( NZ*EPS + (*) )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 169 of file zpbt05.f.

171*
172* -- LAPACK test routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 CHARACTER UPLO
178 INTEGER KD, LDAB, LDB, LDX, LDXACT, N, NRHS
179* ..
180* .. Array Arguments ..
181 DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * )
182 COMPLEX*16 AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
183 $ XACT( LDXACT, * )
184* ..
185*
186* =====================================================================
187*
188* .. Parameters ..
189 DOUBLE PRECISION ZERO, ONE
190 parameter( zero = 0.0d+0, one = 1.0d+0 )
191* ..
192* .. Local Scalars ..
193 LOGICAL UPPER
194 INTEGER I, IMAX, J, K, NZ
195 DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
196 COMPLEX*16 ZDUM
197* ..
198* .. External Functions ..
199 LOGICAL LSAME
200 INTEGER IZAMAX
201 DOUBLE PRECISION DLAMCH
202 EXTERNAL lsame, izamax, dlamch
203* ..
204* .. Intrinsic Functions ..
205 INTRINSIC abs, dble, dimag, max, min
206* ..
207* .. Statement Functions ..
208 DOUBLE PRECISION CABS1
209* ..
210* .. Statement Function definitions ..
211 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
212* ..
213* .. Executable Statements ..
214*
215* Quick exit if N = 0 or NRHS = 0.
216*
217 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
218 reslts( 1 ) = zero
219 reslts( 2 ) = zero
220 RETURN
221 END IF
222*
223 eps = dlamch( 'Epsilon' )
224 unfl = dlamch( 'Safe minimum' )
225 ovfl = one / unfl
226 upper = lsame( uplo, 'U' )
227 nz = 2*max( kd, n-1 ) + 1
228*
229* Test 1: Compute the maximum of
230* norm(X - XACT) / ( norm(X) * FERR )
231* over all the vectors X and XACT using the infinity-norm.
232*
233 errbnd = zero
234 DO 30 j = 1, nrhs
235 imax = izamax( n, x( 1, j ), 1 )
236 xnorm = max( cabs1( x( imax, j ) ), unfl )
237 diff = zero
238 DO 10 i = 1, n
239 diff = max( diff, cabs1( x( i, j )-xact( i, j ) ) )
240 10 CONTINUE
241*
242 IF( xnorm.GT.one ) THEN
243 GO TO 20
244 ELSE IF( diff.LE.ovfl*xnorm ) THEN
245 GO TO 20
246 ELSE
247 errbnd = one / eps
248 GO TO 30
249 END IF
250*
251 20 CONTINUE
252 IF( diff / xnorm.LE.ferr( j ) ) THEN
253 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
254 ELSE
255 errbnd = one / eps
256 END IF
257 30 CONTINUE
258 reslts( 1 ) = errbnd
259*
260* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
261* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
262*
263 DO 90 k = 1, nrhs
264 DO 80 i = 1, n
265 tmp = cabs1( b( i, k ) )
266 IF( upper ) THEN
267 DO 40 j = max( i-kd, 1 ), i - 1
268 tmp = tmp + cabs1( ab( kd+1-i+j, i ) )*
269 $ cabs1( x( j, k ) )
270 40 CONTINUE
271 tmp = tmp + abs( dble( ab( kd+1, i ) ) )*
272 $ cabs1( x( i, k ) )
273 DO 50 j = i + 1, min( i+kd, n )
274 tmp = tmp + cabs1( ab( kd+1+i-j, j ) )*
275 $ cabs1( x( j, k ) )
276 50 CONTINUE
277 ELSE
278 DO 60 j = max( i-kd, 1 ), i - 1
279 tmp = tmp + cabs1( ab( 1+i-j, j ) )*cabs1( x( j, k ) )
280 60 CONTINUE
281 tmp = tmp + abs( dble( ab( 1, i ) ) )*cabs1( x( i, k ) )
282 DO 70 j = i + 1, min( i+kd, n )
283 tmp = tmp + cabs1( ab( 1+j-i, i ) )*cabs1( x( j, k ) )
284 70 CONTINUE
285 END IF
286 IF( i.EQ.1 ) THEN
287 axbi = tmp
288 ELSE
289 axbi = min( axbi, tmp )
290 END IF
291 80 CONTINUE
292 tmp = berr( k ) / ( nz*eps+nz*unfl / max( axbi, nz*unfl ) )
293 IF( k.EQ.1 ) THEN
294 reslts( 2 ) = tmp
295 ELSE
296 reslts( 2 ) = max( reslts( 2 ), tmp )
297 END IF
298 90 CONTINUE
299*
300 RETURN
301*
302* End of ZPBT05
303*
integer function izamax(n, zx, incx)
IZAMAX
Definition izamax.f:71
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the caller graph for this function: