LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgemlq.f
Go to the documentation of this file.
1*> \brief \b CGEMLQ
2*
3* Definition:
4* ===========
5*
6* SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T,
7* $ TSIZE, C, LDC, WORK, LWORK, INFO )
8*
9*
10* .. Scalar Arguments ..
11* CHARACTER SIDE, TRANS
12* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC
13* ..
14* .. Array Arguments ..
15* COMPLEX A( LDA, * ), T( * ), C(LDC, * ), WORK( * )
16* ..
17*
18*> \par Purpose:
19* =============
20*>
21*> \verbatim
22*>
23*> CGEMLQ overwrites the general real M-by-N matrix C with
24*>
25*> SIDE = 'L' SIDE = 'R'
26*> TRANS = 'N': Q * C C * Q
27*> TRANS = 'C': Q**H * C C * Q**H
28*> where Q is a complex unitary matrix defined as the product
29*> of blocked elementary reflectors computed by short wide
30*> LQ factorization (CGELQ)
31*>
32*> \endverbatim
33*
34* Arguments:
35* ==========
36*
37*> \param[in] SIDE
38*> \verbatim
39*> SIDE is CHARACTER*1
40*> = 'L': apply Q or Q**H from the Left;
41*> = 'R': apply Q or Q**H from the Right.
42*> \endverbatim
43*>
44*> \param[in] TRANS
45*> \verbatim
46*> TRANS is CHARACTER*1
47*> = 'N': No transpose, apply Q;
48*> = 'C': Conjugate transpose, apply Q**H.
49*> \endverbatim
50*>
51*> \param[in] M
52*> \verbatim
53*> M is INTEGER
54*> The number of rows of the matrix A. M >=0.
55*> \endverbatim
56*>
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The number of columns of the matrix C. N >= 0.
61*> \endverbatim
62*>
63*> \param[in] K
64*> \verbatim
65*> K is INTEGER
66*> The number of elementary reflectors whose product defines
67*> the matrix Q.
68*> If SIDE = 'L', M >= K >= 0;
69*> if SIDE = 'R', N >= K >= 0.
70*> \endverbatim
71*>
72*> \param[in] A
73*> \verbatim
74*> A is COMPLEX array, dimension
75*> (LDA,M) if SIDE = 'L',
76*> (LDA,N) if SIDE = 'R'
77*> Part of the data structure to represent Q as returned by CGELQ.
78*> \endverbatim
79*>
80*> \param[in] LDA
81*> \verbatim
82*> LDA is INTEGER
83*> The leading dimension of the array A. LDA >= max(1,K).
84*> \endverbatim
85*>
86*> \param[in] T
87*> \verbatim
88*> T is COMPLEX array, dimension (MAX(5,TSIZE)).
89*> Part of the data structure to represent Q as returned by CGELQ.
90*> \endverbatim
91*>
92*> \param[in] TSIZE
93*> \verbatim
94*> TSIZE is INTEGER
95*> The dimension of the array T. TSIZE >= 5.
96*> \endverbatim
97*>
98*> \param[in,out] C
99*> \verbatim
100*> C is COMPLEX array, dimension (LDC,N)
101*> On entry, the M-by-N matrix C.
102*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
103*> \endverbatim
104*>
105*> \param[in] LDC
106*> \verbatim
107*> LDC is INTEGER
108*> The leading dimension of the array C. LDC >= max(1,M).
109*> \endverbatim
110*>
111*> \param[out] WORK
112*> \verbatim
113*> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
114*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
115*> \endverbatim
116*>
117*> \param[in] LWORK
118*> \verbatim
119*> LWORK is INTEGER
120*> The dimension of the array WORK. LWORK >= 1.
121*> If LWORK = -1, then a workspace query is assumed. The routine
122*> only calculates the size of the WORK array, returns this
123*> value as WORK(1), and no error message related to WORK
124*> is issued by XERBLA.
125*> \endverbatim
126*>
127*> \param[out] INFO
128*> \verbatim
129*> INFO is INTEGER
130*> = 0: successful exit
131*> < 0: if INFO = -i, the i-th argument had an illegal value
132*> \endverbatim
133*
134* Authors:
135* ========
136*
137*> \author Univ. of Tennessee
138*> \author Univ. of California Berkeley
139*> \author Univ. of Colorado Denver
140*> \author NAG Ltd.
141*
142*> \par Further Details
143* ====================
144*>
145*> \verbatim
146*>
147*> These details are particular for this LAPACK implementation. Users should not
148*> take them for granted. These details may change in the future, and are not likely
149*> true for another LAPACK implementation. These details are relevant if one wants
150*> to try to understand the code. They are not part of the interface.
151*>
152*> In this version,
153*>
154*> T(2): row block size (MB)
155*> T(3): column block size (NB)
156*> T(6:TSIZE): data structure needed for Q, computed by
157*> CLASWQR or CGELQT
158*>
159*> Depending on the matrix dimensions M and N, and row and column
160*> block sizes MB and NB returned by ILAENV, CGELQ will use either
161*> CLASWLQ (if the matrix is wide-and-short) or CGELQT to compute
162*> the LQ factorization.
163*> This version of CGEMLQ will use either CLAMSWLQ or CGEMLQT to
164*> multiply matrix Q by another matrix.
165*> Further Details in CLAMSWLQ or CGEMLQT.
166*> \endverbatim
167*>
168*> \ingroup gemlq
169*>
170* =====================================================================
171 SUBROUTINE cgemlq( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
172 $ C, LDC, WORK, LWORK, INFO )
173*
174* -- LAPACK computational routine --
175* -- LAPACK is a software package provided by Univ. of Tennessee, --
176* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177*
178* .. Scalar Arguments ..
179 CHARACTER SIDE, TRANS
180 INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
181* ..
182* .. Array Arguments ..
183 COMPLEX A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
184* ..
185*
186* =====================================================================
187*
188* ..
189* .. Local Scalars ..
190 LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
191 INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN
192* ..
193* .. External Functions ..
194 LOGICAL LSAME
195 REAL SROUNDUP_LWORK
196 EXTERNAL lsame, sroundup_lwork
197* ..
198* .. External Subroutines ..
199 EXTERNAL clamswlq, cgemlqt, xerbla
200* ..
201* .. Intrinsic Functions ..
202 INTRINSIC int, max, min, mod
203* ..
204* .. Executable Statements ..
205*
206* Test the input arguments
207*
208 lquery = ( lwork.EQ.-1 )
209 notran = lsame( trans, 'N' )
210 tran = lsame( trans, 'C' )
211 left = lsame( side, 'L' )
212 right = lsame( side, 'R' )
213*
214 mb = int( t( 2 ) )
215 nb = int( t( 3 ) )
216 IF( left ) THEN
217 lw = n * mb
218 mn = m
219 ELSE
220 lw = m * mb
221 mn = n
222 END IF
223*
224 minmnk = min( m, n, k )
225 IF( minmnk.EQ.0 ) THEN
226 lwmin = 1
227 ELSE
228 lwmin = max( 1, lw )
229 END IF
230*
231 IF( ( nb.GT.k ) .AND. ( mn.GT.k ) ) THEN
232 IF( mod( mn - k, nb - k ) .EQ. 0 ) THEN
233 nblcks = ( mn - k ) / ( nb - k )
234 ELSE
235 nblcks = ( mn - k ) / ( nb - k ) + 1
236 END IF
237 ELSE
238 nblcks = 1
239 END IF
240*
241 info = 0
242 IF( .NOT.left .AND. .NOT.right ) THEN
243 info = -1
244 ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
245 info = -2
246 ELSE IF( m.LT.0 ) THEN
247 info = -3
248 ELSE IF( n.LT.0 ) THEN
249 info = -4
250 ELSE IF( k.LT.0 .OR. k.GT.mn ) THEN
251 info = -5
252 ELSE IF( lda.LT.max( 1, k ) ) THEN
253 info = -7
254 ELSE IF( tsize.LT.5 ) THEN
255 info = -9
256 ELSE IF( ldc.LT.max( 1, m ) ) THEN
257 info = -11
258 ELSE IF( ( lwork.LT.lwmin ) .AND. ( .NOT.lquery ) ) THEN
259 info = -13
260 END IF
261*
262 IF( info.EQ.0 ) THEN
263 work( 1 ) = sroundup_lwork( lwmin )
264 END IF
265*
266 IF( info.NE.0 ) THEN
267 CALL xerbla( 'CGEMLQ', -info )
268 RETURN
269 ELSE IF( lquery ) THEN
270 RETURN
271 END IF
272*
273* Quick return if possible
274*
275 IF( minmnk.EQ.0 ) THEN
276 RETURN
277 END IF
278*
279 IF( ( left .AND. m.LE.k ) .OR. ( right .AND. n.LE.k )
280 $ .OR. ( nb.LE.k ) .OR. ( nb.GE.max( m, n, k ) ) ) THEN
281 CALL cgemlqt( side, trans, m, n, k, mb, a, lda,
282 $ t( 6 ), mb, c, ldc, work, info )
283 ELSE
284 CALL clamswlq( side, trans, m, n, k, mb, nb, a, lda, t( 6 ),
285 $ mb, c, ldc, work, lwork, info )
286 END IF
287*
288 work( 1 ) = sroundup_lwork( lwmin )
289*
290 RETURN
291*
292* End of CGEMLQ
293*
294 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgemlq(side, trans, m, n, k, a, lda, t, tsize, c, ldc, work, lwork, info)
CGEMLQ
Definition cgemlq.f:173
subroutine cgemlqt(side, trans, m, n, k, mb, v, ldv, t, ldt, c, ldc, work, info)
CGEMLQT
Definition cgemlqt.f:153
subroutine clamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
CLAMSWLQ
Definition clamswlq.f:200