133 SUBROUTINE dsytrs_aa( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
134 $ WORK, LWORK, INFO )
144 INTEGER N, NRHS, LDA, LDB, LWORK, INFO
148 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
154 parameter( one = 1.0d+0 )
157 LOGICAL LQUERY, UPPER
158 INTEGER K, KP, LWKMIN
173 upper = lsame( uplo,
'U' )
174 lquery = ( lwork.EQ.-1 )
175 IF( min( n, nrhs ).EQ.0 )
THEN
181 IF( .NOT.upper .AND. .NOT.lsame( uplo,
'L' ) )
THEN
183 ELSE IF( n.LT.0 )
THEN
185 ELSE IF( nrhs.LT.0 )
THEN
187 ELSE IF( lda.LT.max( 1, n ) )
THEN
189 ELSE IF( ldb.LT.max( 1, n ) )
THEN
191 ELSE IF( lwork.LT.lwkmin .AND. .NOT.lquery )
THEN
195 CALL xerbla(
'DSYTRS_AA', -info )
197 ELSE IF( lquery )
THEN
204 IF( min( n, nrhs ).EQ.0 )
220 $
CALL dswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ),
226 CALL dtrsm(
'L',
'U',
'T',
'U', n-1, nrhs, one, a( 1, 2 ),
227 $ lda, b( 2, 1 ), ldb)
234 CALL dlacpy(
'F', 1, n, a( 1, 1 ), lda+1, work( n ), 1)
236 CALL dlacpy(
'F', 1, n-1, a( 1, 2 ), lda+1, work( 1 ),
238 CALL dlacpy(
'F', 1, n-1, a( 1, 2 ), lda+1, work( 2*n ),
241 CALL dgtsv( n, nrhs, work( 1 ), work( n ), work( 2*n ), b,
251 CALL dtrsm(
'L',
'U',
'N',
'U', n-1, nrhs, one, a( 1,
253 $ lda, b( 2, 1 ), ldb)
260 $
CALL dswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
277 $
CALL dswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
282 CALL dtrsm(
'L',
'L',
'N',
'U', n-1, nrhs, one, a( 2,
284 $ lda, b( 2, 1 ), ldb)
291 CALL dlacpy(
'F', 1, n, a(1, 1), lda+1, work(n), 1)
293 CALL dlacpy(
'F', 1, n-1, a( 2, 1 ), lda+1, work( 1 ),
295 CALL dlacpy(
'F', 1, n-1, a( 2, 1 ), lda+1, work( 2*n ),
298 CALL dgtsv( n, nrhs, work( 1 ), work(n), work( 2*n ), b,
308 CALL dtrsm(
'L',
'L',
'T',
'U', n-1, nrhs, one, a( 2,
310 $ lda, b( 2, 1 ), ldb)
317 $
CALL dswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
subroutine dgtsv(n, nrhs, dl, d, du, b, ldb, info)
DGTSV computes the solution to system of linear equations A * X = B for GT matrices