LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
lapacke_dtz_trans.c
Go to the documentation of this file.
1/*****************************************************************************
2 Copyright (c) 2022, Intel Corp.
3 All rights reserved.
4
5 Redistribution and use in source and binary forms, with or without
6 modification, are permitted provided that the following conditions are met:
7
8 * Redistributions of source code must retain the above copyright notice,
9 this list of conditions and the following disclaimer.
10 * Redistributions in binary form must reproduce the above copyright
11 notice, this list of conditions and the following disclaimer in the
12 documentation and/or other materials provided with the distribution.
13 * Neither the name of Intel Corporation nor the names of its contributors
14 may be used to endorse or promote products derived from this software
15 without specific prior written permission.
16
17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 THE POSSIBILITY OF SUCH DAMAGE.
28******************************************************************************
29* Contents: Native C interface to LAPACK utility function
30* Author: Simon Märtens
31*****************************************************************************/
32
33#include "lapacke_utils.h"
34
35/*****************************************************************************
36 Converts input triangular matrix from row-major(C) to column-major(Fortran)
37 layout or vice versa. The shape of the trapezoidal matrix is determined by
38 the arguments `direct` and `uplo`. `Direct` chooses the diagonal which shall
39 be considered and `uplo` tells us whether we use the upper or lower part of
40 the matrix with respect to the chosen diagonal.
41
42 Diagonals 'F' (front / forward) and 'B' (back / backward):
43
44 A = ( F ) A = ( F B )
45 ( F ) ( F B )
46 ( B F ) ( F B )
47 ( B )
48 ( B )
49
50 direct = 'F', uplo = 'L':
51
52 A = ( * ) A = ( * )
53 ( * * ) ( * * )
54 ( * * * ) ( * * * )
55 ( * * * )
56 ( * * * )
57
58 direct = 'F', uplo = 'U':
59
60 A = ( * * * ) A = ( * * * * * )
61 ( * * ) ( * * * * )
62 ( * ) ( * * * )
63 ( )
64 ( )
65
66 direct = 'B', uplo = 'L':
67
68 A = ( ) A = ( * * * )
69 ( ) ( * * * * )
70 ( * ) ( * * * * * )
71 ( * * )
72 ( * * * )
73
74 direct = 'B', uplo = 'U':
75
76 A = ( * * * ) A = ( * * * )
77 ( * * * ) ( * * )
78 ( * * * ) ( * )
79 ( * * )
80 ( * )
81
82*****************************************************************************/
83
84void LAPACKE_dtz_trans( int matrix_layout, char direct, char uplo,
85 char diag, lapack_int m, lapack_int n,
86 const double *in, lapack_int ldin,
87 double *out, lapack_int ldout )
88{
89 lapack_logical colmaj, front, lower, unit;
90
91 if( in == NULL || out == NULL ) return ;
92
93 colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
94 front = LAPACKE_lsame( direct, 'f' );
95 lower = LAPACKE_lsame( uplo, 'l' );
96 unit = LAPACKE_lsame( diag, 'u' );
97
98 if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
99 ( !front && !LAPACKE_lsame( direct, 'b' ) ) ||
100 ( !lower && !LAPACKE_lsame( uplo, 'u' ) ) ||
101 ( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
102 /* Just exit if any of input parameters are wrong */
103 return;
104 }
105
106 /* Initial offsets and sizes of triangular and rectangular parts */
107 lapack_int tri_in_offset = 0;
108 lapack_int tri_out_offset = 0;
109 lapack_int tri_n = MIN(m,n);
110 lapack_int rect_in_offset = -1;
111 lapack_int rect_out_offset = -1;
112 lapack_int rect_m = ( m > n ) ? m - n : m;
113 lapack_int rect_n = ( n > m ) ? n - m : n;
114
115 /* Fix offsets depending on the shape of the matrix */
116 if( front ) {
117 if( lower && m > n ) {
118 rect_in_offset = tri_n * ( !colmaj ? ldin : 1 );
119 rect_out_offset = tri_n * ( colmaj ? ldout : 1 );
120 } else if( !lower && n > m ) {
121 rect_in_offset = tri_n * ( colmaj ? ldin : 1 );
122 rect_out_offset = tri_n * ( !colmaj ? ldout : 1 );
123 }
124 } else {
125 if( m > n ) {
126 tri_in_offset = rect_m * ( !colmaj ? ldin : 1 );
127 tri_out_offset = rect_m * ( colmaj ? ldout : 1 );
128 if( !lower ) {
129 rect_in_offset = 0;
130 rect_out_offset = 0;
131 }
132 } else if( n > m ) {
133 tri_in_offset = rect_n * ( colmaj ? ldin : 1 );
134 tri_out_offset = rect_n * ( !colmaj ? ldout : 1 );
135 if( lower ) {
136 rect_in_offset = 0;
137 rect_out_offset = 0;
138 }
139 }
140 }
141
142 /* Copy & transpose rectangular part */
143 if( rect_in_offset >= 0 && rect_out_offset >= 0 ) {
144 LAPACKE_dge_trans( matrix_layout, rect_m, rect_n,
145 &in[rect_in_offset], ldin,
146 &out[rect_out_offset], ldout );
147 }
148
149 /* Copy & transpose triangular part */
150 return LAPACKE_dtr_trans( matrix_layout, uplo, diag, tri_n,
151 &in[tri_in_offset], ldin,
152 &out[tri_out_offset], ldout );
153}
#define lapack_int
Definition: lapack.h:87
#define lapack_logical
Definition: lapack.h:103
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
void LAPACKE_dtz_trans(int matrix_layout, char direct, char uplo, char diag, lapack_int m, lapack_int n, const double *in, lapack_int ldin, double *out, lapack_int ldout)
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_dtr_trans(int matrix_layout, char uplo, char diag, lapack_int n, const double *in, lapack_int ldin, double *out, lapack_int ldout)
#define MIN(x, y)
Definition: lapacke_utils.h:49
void LAPACKE_dge_trans(int matrix_layout, lapack_int m, lapack_int n, const double *in, lapack_int ldin, double *out, lapack_int ldout)