LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine sstegr | ( | character | jobz, |
character | range, | ||
integer | n, | ||
real, dimension( * ) | d, | ||
real, dimension( * ) | e, | ||
real | vl, | ||
real | vu, | ||
integer | il, | ||
integer | iu, | ||
real | abstol, | ||
integer | m, | ||
real, dimension( * ) | w, | ||
real, dimension( ldz, * ) | z, | ||
integer | ldz, | ||
integer, dimension( * ) | isuppz, | ||
real, dimension( * ) | work, | ||
integer | lwork, | ||
integer, dimension( * ) | iwork, | ||
integer | liwork, | ||
integer | info ) |
SSTEGR
Download SSTEGR + dependencies [TGZ] [ZIP] [TXT]
!> !> SSTEGR computes selected eigenvalues and, optionally, eigenvectors !> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has !> a well defined set of pairwise different real eigenvalues, the corresponding !> real eigenvectors are pairwise orthogonal. !> !> The spectrum may be computed either completely or partially by specifying !> either an interval (VL,VU] or a range of indices IL:IU for the desired !> eigenvalues. !> !> SSTEGR is a compatibility wrapper around the improved SSTEMR routine. !> See SSTEMR for further details. !> !> One important change is that the ABSTOL parameter no longer provides any !> benefit and hence is no longer used. !> !> Note : SSTEGR and SSTEMR work only on machines which follow !> IEEE-754 floating-point standard in their handling of infinities and !> NaNs. Normal execution may create these exceptional values and hence !> may abort due to a floating point exception in environments which !> do not conform to the IEEE-754 standard. !>
[in] | JOBZ | !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> |
[in] | RANGE | !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found. !> = 'I': the IL-th through IU-th eigenvalues will be found. !> |
[in] | N | !> N is INTEGER !> The order of the matrix. N >= 0. !> |
[in,out] | D | !> D is REAL array, dimension (N) !> On entry, the N diagonal elements of the tridiagonal matrix !> T. On exit, D is overwritten. !> |
[in,out] | E | !> E is REAL array, dimension (N) !> On entry, the (N-1) subdiagonal elements of the tridiagonal !> matrix T in elements 1 to N-1 of E. E(N) need not be set on !> input, but is used internally as workspace. !> On exit, E is overwritten. !> |
[in] | VL | !> VL is REAL !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !> |
[in] | VU | !> VU is REAL !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !> |
[in] | IL | !> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0. !> Not referenced if RANGE = 'A' or 'V'. !> |
[in] | IU | !> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0. !> Not referenced if RANGE = 'A' or 'V'. !> |
[in] | ABSTOL | !> ABSTOL is REAL !> Unused. Was the absolute error tolerance for the !> eigenvalues/eigenvectors in previous versions. !> |
[out] | M | !> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !> |
[out] | W | !> W is REAL array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order. !> |
[out] | Z | !> Z is REAL array, dimension (LDZ, max(1,M) ) !> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z !> contain the orthonormal eigenvectors of the matrix T !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used. !> Supplying N columns is always safe. !> |
[in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', then LDZ >= max(1,N). !> |
[out] | ISUPPZ | !> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i.e., the indices !> indicating the nonzero elements in Z. The i-th computed eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i ). This is relevant in the case when the matrix !> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. !> |
[out] | WORK | !> WORK is REAL array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal !> (and minimal) LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,18*N) !> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (LIWORK) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. !> |
[in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= max(1,10*N) !> if the eigenvectors are desired, and LIWORK >= max(1,8*N) !> if only the eigenvalues are to be computed. !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> On exit, INFO !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = 1X, internal error in SLARRE, !> if INFO = 2X, internal error in SLARRV. !> Here, the digit X = ABS( IINFO ) < 10, where IINFO is !> the nonzero error code returned by SLARRE or !> SLARRV, respectively. !> |
Definition at line 260 of file sstegr.f.