LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zstegr()

subroutine zstegr ( character jobz,
character range,
integer n,
double precision, dimension( * ) d,
double precision, dimension( * ) e,
double precision vl,
double precision vu,
integer il,
integer iu,
double precision abstol,
integer m,
double precision, dimension( * ) w,
complex*16, dimension( ldz, * ) z,
integer ldz,
integer, dimension( * ) isuppz,
double precision, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer liwork,
integer info )

ZSTEGR

Download ZSTEGR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZSTEGR computes selected eigenvalues and, optionally, eigenvectors !> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has !> a well defined set of pairwise different real eigenvalues, the corresponding !> real eigenvectors are pairwise orthogonal. !> !> The spectrum may be computed either completely or partially by specifying !> either an interval (VL,VU] or a range of indices IL:IU for the desired !> eigenvalues. !> !> ZSTEGR is a compatibility wrapper around the improved ZSTEMR routine. !> See ZSTEMR for further details. !> !> One important change is that the ABSTOL parameter no longer provides any !> benefit and hence is no longer used. !> !> Note : ZSTEGR and ZSTEMR work only on machines which follow !> IEEE-754 floating-point standard in their handling of infinities and !> NaNs. Normal execution may create these exceptional values and hence !> may abort due to a floating point exception in environments which !> do not conform to the IEEE-754 standard. !>
Parameters
[in]JOBZ
!> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !>
[in]RANGE
!> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found. !> = 'I': the IL-th through IU-th eigenvalues will be found. !>
[in]N
!> N is INTEGER !> The order of the matrix. N >= 0. !>
[in,out]D
!> D is DOUBLE PRECISION array, dimension (N) !> On entry, the N diagonal elements of the tridiagonal matrix !> T. On exit, D is overwritten. !>
[in,out]E
!> E is DOUBLE PRECISION array, dimension (N) !> On entry, the (N-1) subdiagonal elements of the tridiagonal !> matrix T in elements 1 to N-1 of E. E(N) need not be set on !> input, but is used internally as workspace. !> On exit, E is overwritten. !>
[in]VL
!> VL is DOUBLE PRECISION !> !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
[in]VU
!> VU is DOUBLE PRECISION !> !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !>
[in]IL
!> IL is INTEGER !> !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0. !> Not referenced if RANGE = 'A' or 'V'. !>
[in]IU
!> IU is INTEGER !> !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0. !> Not referenced if RANGE = 'A' or 'V'. !>
[in]ABSTOL
!> ABSTOL is DOUBLE PRECISION !> Unused. Was the absolute error tolerance for the !> eigenvalues/eigenvectors in previous versions. !>
[out]M
!> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !>
[out]W
!> W is DOUBLE PRECISION array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order. !>
[out]Z
!> Z is COMPLEX*16 array, dimension (LDZ, max(1,M) ) !> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z !> contain the orthonormal eigenvectors of the matrix T !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> If JOBZ = 'N', then Z is not referenced. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used. !> Supplying N columns is always safe. !>
[in]LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', then LDZ >= max(1,N). !>
[out]ISUPPZ
!> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i.e., the indices !> indicating the nonzero elements in Z. The i-th computed eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i ). This is relevant in the case when the matrix !> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. !>
[out]WORK
!> WORK is DOUBLE PRECISION array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns the optimal !> (and minimal) LWORK. !>
[in]LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,18*N) !> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
[out]IWORK
!> IWORK is INTEGER array, dimension (LIWORK) !> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. !>
[in]LIWORK
!> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= max(1,10*N) !> if the eigenvectors are desired, and LIWORK >= max(1,8*N) !> if only the eigenvalues are to be computed. !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal size of the IWORK array, !> returns this value as the first entry of the IWORK array, and !> no error message related to LIWORK is issued by XERBLA. !>
[out]INFO
!> INFO is INTEGER !> On exit, INFO !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = 1X, internal error in DLARRE, !> if INFO = 2X, internal error in ZLARRV. !> Here, the digit X = ABS( IINFO ) < 10, where IINFO is !> the nonzero error code returned by DLARRE or !> ZLARRV, respectively. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, LBNL/NERSC, USA

Definition at line 260 of file zstegr.f.

263*
264* -- LAPACK computational routine --
265* -- LAPACK is a software package provided by Univ. of Tennessee, --
266* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
267*
268* .. Scalar Arguments ..
269 CHARACTER JOBZ, RANGE
270 INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
271 DOUBLE PRECISION ABSTOL, VL, VU
272* ..
273* .. Array Arguments ..
274 INTEGER ISUPPZ( * ), IWORK( * )
275 DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * )
276 COMPLEX*16 Z( LDZ, * )
277* ..
278*
279* =====================================================================
280*
281* .. Local Scalars ..
282 LOGICAL TRYRAC
283* ..
284* .. External Subroutines ..
285 EXTERNAL zstemr
286* ..
287* .. Executable Statements ..
288 info = 0
289 tryrac = .false.
290
291 CALL zstemr( jobz, range, n, d, e, vl, vu, il, iu,
292 $ m, w, z, ldz, n, isuppz, tryrac, work, lwork,
293 $ iwork, liwork, info )
294*
295* End of ZSTEGR
296*
subroutine zstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac, work, lwork, iwork, liwork, info)
ZSTEMR
Definition zstemr.f:337
Here is the call graph for this function: