LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

## ◆ cdrvpp()

 subroutine cdrvpp ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) ASAV, complex, dimension( * ) B, complex, dimension( * ) BSAV, complex, dimension( * ) X, complex, dimension( * ) XACT, real, dimension( * ) S, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer NOUT )

CDRVPP

Purpose:
` CDRVPP tests the driver routines CPPSV and -SVX.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*(NMAX+1)/2)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*(NMAX+1)/2)` [out] ASAV ` ASAV is COMPLEX array, dimension (NMAX*(NMAX+1)/2)` [out] B ` B is COMPLEX array, dimension (NMAX*NRHS)` [out] BSAV ` BSAV is COMPLEX array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NRHS)` [out] S ` S is REAL array, dimension (NMAX)` [out] WORK ``` WORK is COMPLEX array, dimension (NMAX*max(3,NRHS))``` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 156 of file cdrvpp.f.

159 *
160 * -- LAPACK test routine --
161 * -- LAPACK is a software package provided by Univ. of Tennessee, --
162 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163 *
164 * .. Scalar Arguments ..
165  LOGICAL TSTERR
166  INTEGER NMAX, NN, NOUT, NRHS
167  REAL THRESH
168 * ..
169 * .. Array Arguments ..
170  LOGICAL DOTYPE( * )
171  INTEGER NVAL( * )
172  REAL RWORK( * ), S( * )
173  COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
174  \$ BSAV( * ), WORK( * ), X( * ), XACT( * )
175 * ..
176 *
177 * =====================================================================
178 *
179 * .. Parameters ..
180  REAL ONE, ZERO
181  parameter( one = 1.0e+0, zero = 0.0e+0 )
182  INTEGER NTYPES
183  parameter( ntypes = 9 )
184  INTEGER NTESTS
185  parameter( ntests = 6 )
186 * ..
187 * .. Local Scalars ..
188  LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
189  CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
190  CHARACTER*3 PATH
191  INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
192  \$ IZERO, K, K1, KL, KU, LDA, MODE, N, NERRS,
193  \$ NFACT, NFAIL, NIMAT, NPP, NRUN, NT
194  REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
195  \$ ROLDC, SCOND
196 * ..
197 * .. Local Arrays ..
198  CHARACTER EQUEDS( 2 ), FACTS( 3 ), PACKS( 2 ), UPLOS( 2 )
199  INTEGER ISEED( 4 ), ISEEDY( 4 )
200  REAL RESULT( NTESTS )
201 * ..
202 * .. External Functions ..
203  LOGICAL LSAME
204  REAL CLANHP, SGET06
205  EXTERNAL lsame, clanhp, sget06
206 * ..
207 * .. External Subroutines ..
208  EXTERNAL aladhd, alaerh, alasvm, ccopy, cerrvx, cget04,
211  \$ cppt05, cpptrf, cpptri
212 * ..
213 * .. Scalars in Common ..
214  LOGICAL LERR, OK
215  CHARACTER*32 SRNAMT
216  INTEGER INFOT, NUNIT
217 * ..
218 * .. Common blocks ..
219  COMMON / infoc / infot, nunit, ok, lerr
220  COMMON / srnamc / srnamt
221 * ..
222 * .. Intrinsic Functions ..
223  INTRINSIC cmplx, max
224 * ..
225 * .. Data statements ..
226  DATA iseedy / 1988, 1989, 1990, 1991 /
227  DATA uplos / 'U', 'L' / , facts / 'F', 'N', 'E' / ,
228  \$ packs / 'C', 'R' / , equeds / 'N', 'Y' /
229 * ..
230 * .. Executable Statements ..
231 *
232 * Initialize constants and the random number seed.
233 *
234  path( 1: 1 ) = 'Complex precision'
235  path( 2: 3 ) = 'PP'
236  nrun = 0
237  nfail = 0
238  nerrs = 0
239  DO 10 i = 1, 4
240  iseed( i ) = iseedy( i )
241  10 CONTINUE
242 *
243 * Test the error exits
244 *
245  IF( tsterr )
246  \$ CALL cerrvx( path, nout )
247  infot = 0
248 *
249 * Do for each value of N in NVAL
250 *
251  DO 140 in = 1, nn
252  n = nval( in )
253  lda = max( n, 1 )
254  npp = n*( n+1 ) / 2
255  xtype = 'N'
256  nimat = ntypes
257  IF( n.LE.0 )
258  \$ nimat = 1
259 *
260  DO 130 imat = 1, nimat
261 *
262 * Do the tests only if DOTYPE( IMAT ) is true.
263 *
264  IF( .NOT.dotype( imat ) )
265  \$ GO TO 130
266 *
267 * Skip types 3, 4, or 5 if the matrix size is too small.
268 *
269  zerot = imat.GE.3 .AND. imat.LE.5
270  IF( zerot .AND. n.LT.imat-2 )
271  \$ GO TO 130
272 *
273 * Do first for UPLO = 'U', then for UPLO = 'L'
274 *
275  DO 120 iuplo = 1, 2
276  uplo = uplos( iuplo )
277  packit = packs( iuplo )
278 *
279 * Set up parameters with CLATB4 and generate a test matrix
280 * with CLATMS.
281 *
282  CALL clatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
283  \$ CNDNUM, DIST )
284  rcondc = one / cndnum
285 *
286  srnamt = 'CLATMS'
287  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
288  \$ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK,
289  \$ INFO )
290 *
291 * Check error code from CLATMS.
292 *
293  IF( info.NE.0 ) THEN
294  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
295  \$ -1, -1, imat, nfail, nerrs, nout )
296  GO TO 120
297  END IF
298 *
299 * For types 3-5, zero one row and column of the matrix to
300 * test that INFO is returned correctly.
301 *
302  IF( zerot ) THEN
303  IF( imat.EQ.3 ) THEN
304  izero = 1
305  ELSE IF( imat.EQ.4 ) THEN
306  izero = n
307  ELSE
308  izero = n / 2 + 1
309  END IF
310 *
311 * Set row and column IZERO of A to 0.
312 *
313  IF( iuplo.EQ.1 ) THEN
314  ioff = ( izero-1 )*izero / 2
315  DO 20 i = 1, izero - 1
316  a( ioff+i ) = zero
317  20 CONTINUE
318  ioff = ioff + izero
319  DO 30 i = izero, n
320  a( ioff ) = zero
321  ioff = ioff + i
322  30 CONTINUE
323  ELSE
324  ioff = izero
325  DO 40 i = 1, izero - 1
326  a( ioff ) = zero
327  ioff = ioff + n - i
328  40 CONTINUE
329  ioff = ioff - izero
330  DO 50 i = izero, n
331  a( ioff+i ) = zero
332  50 CONTINUE
333  END IF
334  ELSE
335  izero = 0
336  END IF
337 *
338 * Set the imaginary part of the diagonals.
339 *
340  IF( iuplo.EQ.1 ) THEN
341  CALL claipd( n, a, 2, 1 )
342  ELSE
343  CALL claipd( n, a, n, -1 )
344  END IF
345 *
346 * Save a copy of the matrix A in ASAV.
347 *
348  CALL ccopy( npp, a, 1, asav, 1 )
349 *
350  DO 110 iequed = 1, 2
351  equed = equeds( iequed )
352  IF( iequed.EQ.1 ) THEN
353  nfact = 3
354  ELSE
355  nfact = 1
356  END IF
357 *
358  DO 100 ifact = 1, nfact
359  fact = facts( ifact )
360  prefac = lsame( fact, 'F' )
361  nofact = lsame( fact, 'N' )
362  equil = lsame( fact, 'E' )
363 *
364  IF( zerot ) THEN
365  IF( prefac )
366  \$ GO TO 100
367  rcondc = zero
368 *
369  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
370 *
371 * Compute the condition number for comparison with
372 * the value returned by CPPSVX (FACT = 'N' reuses
373 * the condition number from the previous iteration
374 * with FACT = 'F').
375 *
376  CALL ccopy( npp, asav, 1, afac, 1 )
377  IF( equil .OR. iequed.GT.1 ) THEN
378 *
379 * Compute row and column scale factors to
380 * equilibrate the matrix A.
381 *
382  CALL cppequ( uplo, n, afac, s, scond, amax,
383  \$ info )
384  IF( info.EQ.0 .AND. n.GT.0 ) THEN
385  IF( iequed.GT.1 )
386  \$ scond = zero
387 *
388 * Equilibrate the matrix.
389 *
390  CALL claqhp( uplo, n, afac, s, scond,
391  \$ amax, equed )
392  END IF
393  END IF
394 *
395 * Save the condition number of the
396 * non-equilibrated system for use in CGET04.
397 *
398  IF( equil )
399  \$ roldc = rcondc
400 *
401 * Compute the 1-norm of A.
402 *
403  anorm = clanhp( '1', uplo, n, afac, rwork )
404 *
405 * Factor the matrix A.
406 *
407  CALL cpptrf( uplo, n, afac, info )
408 *
409 * Form the inverse of A.
410 *
411  CALL ccopy( npp, afac, 1, a, 1 )
412  CALL cpptri( uplo, n, a, info )
413 *
414 * Compute the 1-norm condition number of A.
415 *
416  ainvnm = clanhp( '1', uplo, n, a, rwork )
417  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
418  rcondc = one
419  ELSE
420  rcondc = ( one / anorm ) / ainvnm
421  END IF
422  END IF
423 *
424 * Restore the matrix A.
425 *
426  CALL ccopy( npp, asav, 1, a, 1 )
427 *
428 * Form an exact solution and set the right hand side.
429 *
430  srnamt = 'CLARHS'
431  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
432  \$ nrhs, a, lda, xact, lda, b, lda,
433  \$ iseed, info )
434  xtype = 'C'
435  CALL clacpy( 'Full', n, nrhs, b, lda, bsav, lda )
436 *
437  IF( nofact ) THEN
438 *
439 * --- Test CPPSV ---
440 *
441 * Compute the L*L' or U'*U factorization of the
442 * matrix and solve the system.
443 *
444  CALL ccopy( npp, a, 1, afac, 1 )
445  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
446 *
447  srnamt = 'CPPSV '
448  CALL cppsv( uplo, n, nrhs, afac, x, lda, info )
449 *
450 * Check error code from CPPSV .
451 *
452  IF( info.NE.izero ) THEN
453  CALL alaerh( path, 'CPPSV ', info, izero,
454  \$ uplo, n, n, -1, -1, nrhs, imat,
455  \$ nfail, nerrs, nout )
456  GO TO 70
457  ELSE IF( info.NE.0 ) THEN
458  GO TO 70
459  END IF
460 *
461 * Reconstruct matrix from factors and compute
462 * residual.
463 *
464  CALL cppt01( uplo, n, a, afac, rwork,
465  \$ result( 1 ) )
466 *
467 * Compute residual of the computed solution.
468 *
469  CALL clacpy( 'Full', n, nrhs, b, lda, work,
470  \$ lda )
471  CALL cppt02( uplo, n, nrhs, a, x, lda, work,
472  \$ lda, rwork, result( 2 ) )
473 *
474 * Check solution from generated exact solution.
475 *
476  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
477  \$ result( 3 ) )
478  nt = 3
479 *
480 * Print information about the tests that did not
481 * pass the threshold.
482 *
483  DO 60 k = 1, nt
484  IF( result( k ).GE.thresh ) THEN
485  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
486  \$ CALL aladhd( nout, path )
487  WRITE( nout, fmt = 9999 )'CPPSV ', uplo,
488  \$ n, imat, k, result( k )
489  nfail = nfail + 1
490  END IF
491  60 CONTINUE
492  nrun = nrun + nt
493  70 CONTINUE
494  END IF
495 *
496 * --- Test CPPSVX ---
497 *
498  IF( .NOT.prefac .AND. npp.GT.0 )
499  \$ CALL claset( 'Full', npp, 1, cmplx( zero ),
500  \$ cmplx( zero ), afac, npp )
501  CALL claset( 'Full', n, nrhs, cmplx( zero ),
502  \$ cmplx( zero ), x, lda )
503  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
504 *
505 * Equilibrate the matrix if FACT='F' and
506 * EQUED='Y'.
507 *
508  CALL claqhp( uplo, n, a, s, scond, amax, equed )
509  END IF
510 *
511 * Solve the system and compute the condition number
512 * and error bounds using CPPSVX.
513 *
514  srnamt = 'CPPSVX'
515  CALL cppsvx( fact, uplo, n, nrhs, a, afac, equed,
516  \$ s, b, lda, x, lda, rcond, rwork,
517  \$ rwork( nrhs+1 ), work,
518  \$ rwork( 2*nrhs+1 ), info )
519 *
520 * Check the error code from CPPSVX.
521 *
522  IF( info.NE.izero ) THEN
523  CALL alaerh( path, 'CPPSVX', info, izero,
524  \$ fact // uplo, n, n, -1, -1, nrhs,
525  \$ imat, nfail, nerrs, nout )
526  GO TO 90
527  END IF
528 *
529  IF( info.EQ.0 ) THEN
530  IF( .NOT.prefac ) THEN
531 *
532 * Reconstruct matrix from factors and compute
533 * residual.
534 *
535  CALL cppt01( uplo, n, a, afac,
536  \$ rwork( 2*nrhs+1 ), result( 1 ) )
537  k1 = 1
538  ELSE
539  k1 = 2
540  END IF
541 *
542 * Compute residual of the computed solution.
543 *
544  CALL clacpy( 'Full', n, nrhs, bsav, lda, work,
545  \$ lda )
546  CALL cppt02( uplo, n, nrhs, asav, x, lda, work,
547  \$ lda, rwork( 2*nrhs+1 ),
548  \$ result( 2 ) )
549 *
550 * Check solution from generated exact solution.
551 *
552  IF( nofact .OR. ( prefac .AND. lsame( equed,
553  \$ 'N' ) ) ) THEN
554  CALL cget04( n, nrhs, x, lda, xact, lda,
555  \$ rcondc, result( 3 ) )
556  ELSE
557  CALL cget04( n, nrhs, x, lda, xact, lda,
558  \$ roldc, result( 3 ) )
559  END IF
560 *
561 * Check the error bounds from iterative
562 * refinement.
563 *
564  CALL cppt05( uplo, n, nrhs, asav, b, lda, x,
565  \$ lda, xact, lda, rwork,
566  \$ rwork( nrhs+1 ), result( 4 ) )
567  ELSE
568  k1 = 6
569  END IF
570 *
571 * Compare RCOND from CPPSVX with the computed value
572 * in RCONDC.
573 *
574  result( 6 ) = sget06( rcond, rcondc )
575 *
576 * Print information about the tests that did not pass
577 * the threshold.
578 *
579  DO 80 k = k1, 6
580  IF( result( k ).GE.thresh ) THEN
581  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
582  \$ CALL aladhd( nout, path )
583  IF( prefac ) THEN
584  WRITE( nout, fmt = 9997 )'CPPSVX', fact,
585  \$ uplo, n, equed, imat, k, result( k )
586  ELSE
587  WRITE( nout, fmt = 9998 )'CPPSVX', fact,
588  \$ uplo, n, imat, k, result( k )
589  END IF
590  nfail = nfail + 1
591  END IF
592  80 CONTINUE
593  nrun = nrun + 7 - k1
594  90 CONTINUE
595  100 CONTINUE
596  110 CONTINUE
597  120 CONTINUE
598  130 CONTINUE
599  140 CONTINUE
600 *
601 * Print a summary of the results.
602 *
603  CALL alasvm( path, nout, nfail, nrun, nerrs )
604 *
605  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i1,
606  \$ ', test(', i1, ')=', g12.5 )
607  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
608  \$ ', type ', i1, ', test(', i1, ')=', g12.5 )
609  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
610  \$ ', EQUED=''', a1, ''', type ', i1, ', test(', i1, ')=',
611  \$ g12.5 )
612  RETURN
613 *
614 * End of CDRVPP
615 *
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:81
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine cppt02(UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
CPPT02
Definition: cppt02.f:123
subroutine cppt01(UPLO, N, A, AFAC, RWORK, RESID)
CPPT01
Definition: cppt01.f:95
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine cppt05(UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPPT05
Definition: cppt05.f:157
subroutine claipd(N, A, INDA, VINDA)
CLAIPD
Definition: claipd.f:83
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:55
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine claqhp(UPLO, N, AP, S, SCOND, AMAX, EQUED)
CLAQHP scales a Hermitian matrix stored in packed form.
Definition: claqhp.f:126
real function clanhp(NORM, UPLO, N, AP, WORK)
CLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clanhp.f:117
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cppequ(UPLO, N, AP, S, SCOND, AMAX, INFO)
CPPEQU
Definition: cppequ.f:117
subroutine cpptri(UPLO, N, AP, INFO)
CPPTRI
Definition: cpptri.f:93
subroutine cpptrf(UPLO, N, AP, INFO)
CPPTRF
Definition: cpptrf.f:119
subroutine cppsvx(FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: cppsvx.f:311
subroutine cppsv(UPLO, N, NRHS, AP, B, LDB, INFO)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: cppsv.f:144
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: