LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

◆ cchkpo()

 subroutine cchkpo ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNB, integer, dimension( * ) NBVAL, integer NNS, integer, dimension( * ) NSVAL, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer NOUT )

CCHKPO

Purpose:
` CCHKPO tests CPOTRF, -TRI, -TRS, -RFS, and -CON`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNB ``` NNB is INTEGER The number of values of NB contained in the vector NBVAL.``` [in] NBVAL ``` NBVAL is INTEGER array, dimension (NNB) The values of the blocksize NB.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ``` B is COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is COMPLEX array, dimension (NMAX*NSMAX)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NSMAX)` [out] WORK ``` WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))``` [out] RWORK ``` RWORK is REAL array, dimension (NMAX+2*NSMAX)``` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 165 of file cchkpo.f.

168 *
169 * -- LAPACK test routine --
170 * -- LAPACK is a software package provided by Univ. of Tennessee, --
171 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
172 *
173 * .. Scalar Arguments ..
174  LOGICAL TSTERR
175  INTEGER NMAX, NN, NNB, NNS, NOUT
176  REAL THRESH
177 * ..
178 * .. Array Arguments ..
179  LOGICAL DOTYPE( * )
180  INTEGER NBVAL( * ), NSVAL( * ), NVAL( * )
181  REAL RWORK( * )
182  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
183  \$ WORK( * ), X( * ), XACT( * )
184 * ..
185 *
186 * =====================================================================
187 *
188 * .. Parameters ..
189  COMPLEX CZERO
190  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
191  INTEGER NTYPES
192  parameter( ntypes = 9 )
193  INTEGER NTESTS
194  parameter( ntests = 8 )
195 * ..
196 * .. Local Scalars ..
197  LOGICAL ZEROT
198  CHARACTER DIST, TYPE, UPLO, XTYPE
199  CHARACTER*3 PATH
200  INTEGER I, IMAT, IN, INB, INFO, IOFF, IRHS, IUPLO,
201  \$ IZERO, K, KL, KU, LDA, MODE, N, NB, NERRS,
202  \$ NFAIL, NIMAT, NRHS, NRUN
203  REAL ANORM, CNDNUM, RCOND, RCONDC
204 * ..
205 * .. Local Arrays ..
206  CHARACTER UPLOS( 2 )
207  INTEGER ISEED( 4 ), ISEEDY( 4 )
208  REAL RESULT( NTESTS )
209 * ..
210 * .. External Functions ..
211  REAL CLANHE, SGET06
212  EXTERNAL clanhe, sget06
213 * ..
214 * .. External Subroutines ..
215  EXTERNAL alaerh, alahd, alasum, cerrpo, cget04, clacpy,
218  \$ cpotrs, xlaenv
219 * ..
220 * .. Scalars in Common ..
221  LOGICAL LERR, OK
222  CHARACTER*32 SRNAMT
223  INTEGER INFOT, NUNIT
224 * ..
225 * .. Common blocks ..
226  COMMON / infoc / infot, nunit, ok, lerr
227  COMMON / srnamc / srnamt
228 * ..
229 * .. Intrinsic Functions ..
230  INTRINSIC max
231 * ..
232 * .. Data statements ..
233  DATA iseedy / 1988, 1989, 1990, 1991 /
234  DATA uplos / 'U', 'L' /
235 * ..
236 * .. Executable Statements ..
237 *
238 * Initialize constants and the random number seed.
239 *
240  path( 1: 1 ) = 'Complex precision'
241  path( 2: 3 ) = 'PO'
242  nrun = 0
243  nfail = 0
244  nerrs = 0
245  DO 10 i = 1, 4
246  iseed( i ) = iseedy( i )
247  10 CONTINUE
248 *
249 * Test the error exits
250 *
251  IF( tsterr )
252  \$ CALL cerrpo( path, nout )
253  infot = 0
254 *
255 * Do for each value of N in NVAL
256 *
257  DO 120 in = 1, nn
258  n = nval( in )
259  lda = max( n, 1 )
260  xtype = 'N'
261  nimat = ntypes
262  IF( n.LE.0 )
263  \$ nimat = 1
264 *
265  izero = 0
266  DO 110 imat = 1, nimat
267 *
268 * Do the tests only if DOTYPE( IMAT ) is true.
269 *
270  IF( .NOT.dotype( imat ) )
271  \$ GO TO 110
272 *
273 * Skip types 3, 4, or 5 if the matrix size is too small.
274 *
275  zerot = imat.GE.3 .AND. imat.LE.5
276  IF( zerot .AND. n.LT.imat-2 )
277  \$ GO TO 110
278 *
279 * Do first for UPLO = 'U', then for UPLO = 'L'
280 *
281  DO 100 iuplo = 1, 2
282  uplo = uplos( iuplo )
283 *
284 * Set up parameters with CLATB4 and generate a test matrix
285 * with CLATMS.
286 *
287  CALL clatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
288  \$ CNDNUM, DIST )
289 *
290  srnamt = 'CLATMS'
291  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
292  \$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
293  \$ INFO )
294 *
295 * Check error code from CLATMS.
296 *
297  IF( info.NE.0 ) THEN
298  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
299  \$ -1, -1, imat, nfail, nerrs, nout )
300  GO TO 100
301  END IF
302 *
303 * For types 3-5, zero one row and column of the matrix to
304 * test that INFO is returned correctly.
305 *
306  IF( zerot ) THEN
307  IF( imat.EQ.3 ) THEN
308  izero = 1
309  ELSE IF( imat.EQ.4 ) THEN
310  izero = n
311  ELSE
312  izero = n / 2 + 1
313  END IF
314  ioff = ( izero-1 )*lda
315 *
316 * Set row and column IZERO of A to 0.
317 *
318  IF( iuplo.EQ.1 ) THEN
319  DO 20 i = 1, izero - 1
320  a( ioff+i ) = czero
321  20 CONTINUE
322  ioff = ioff + izero
323  DO 30 i = izero, n
324  a( ioff ) = czero
325  ioff = ioff + lda
326  30 CONTINUE
327  ELSE
328  ioff = izero
329  DO 40 i = 1, izero - 1
330  a( ioff ) = czero
331  ioff = ioff + lda
332  40 CONTINUE
333  ioff = ioff - izero
334  DO 50 i = izero, n
335  a( ioff+i ) = czero
336  50 CONTINUE
337  END IF
338  ELSE
339  izero = 0
340  END IF
341 *
342 * Set the imaginary part of the diagonals.
343 *
344  CALL claipd( n, a, lda+1, 0 )
345 *
346 * Do for each value of NB in NBVAL
347 *
348  DO 90 inb = 1, nnb
349  nb = nbval( inb )
350  CALL xlaenv( 1, nb )
351 *
352 * Compute the L*L' or U'*U factorization of the matrix.
353 *
354  CALL clacpy( uplo, n, n, a, lda, afac, lda )
355  srnamt = 'CPOTRF'
356  CALL cpotrf( uplo, n, afac, lda, info )
357 *
358 * Check error code from CPOTRF.
359 *
360  IF( info.NE.izero ) THEN
361  CALL alaerh( path, 'CPOTRF', info, izero, uplo, n,
362  \$ n, -1, -1, nb, imat, nfail, nerrs,
363  \$ nout )
364  GO TO 90
365  END IF
366 *
367 * Skip the tests if INFO is not 0.
368 *
369  IF( info.NE.0 )
370  \$ GO TO 90
371 *
372 *+ TEST 1
373 * Reconstruct matrix from factors and compute residual.
374 *
375  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
376  CALL cpot01( uplo, n, a, lda, ainv, lda, rwork,
377  \$ result( 1 ) )
378 *
379 *+ TEST 2
380 * Form the inverse and compute the residual.
381 *
382  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
383  srnamt = 'CPOTRI'
384  CALL cpotri( uplo, n, ainv, lda, info )
385 *
386 * Check error code from CPOTRI.
387 *
388  IF( info.NE.0 )
389  \$ CALL alaerh( path, 'CPOTRI', info, 0, uplo, n, n,
390  \$ -1, -1, -1, imat, nfail, nerrs, nout )
391 *
392  CALL cpot03( uplo, n, a, lda, ainv, lda, work, lda,
393  \$ rwork, rcondc, result( 2 ) )
394 *
395 * Print information about the tests that did not pass
396 * the threshold.
397 *
398  DO 60 k = 1, 2
399  IF( result( k ).GE.thresh ) THEN
400  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
401  \$ CALL alahd( nout, path )
402  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
403  \$ result( k )
404  nfail = nfail + 1
405  END IF
406  60 CONTINUE
407  nrun = nrun + 2
408 *
409 * Skip the rest of the tests unless this is the first
410 * blocksize.
411 *
412  IF( inb.NE.1 )
413  \$ GO TO 90
414 *
415  DO 80 irhs = 1, nns
416  nrhs = nsval( irhs )
417 *
418 *+ TEST 3
419 * Solve and compute residual for A * X = B .
420 *
421  srnamt = 'CLARHS'
422  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
423  \$ nrhs, a, lda, xact, lda, b, lda,
424  \$ iseed, info )
425  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
426 *
427  srnamt = 'CPOTRS'
428  CALL cpotrs( uplo, n, nrhs, afac, lda, x, lda,
429  \$ info )
430 *
431 * Check error code from CPOTRS.
432 *
433  IF( info.NE.0 )
434  \$ CALL alaerh( path, 'CPOTRS', info, 0, uplo, n,
435  \$ n, -1, -1, nrhs, imat, nfail,
436  \$ nerrs, nout )
437 *
438  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
439  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
440  \$ lda, rwork, result( 3 ) )
441 *
442 *+ TEST 4
443 * Check solution from generated exact solution.
444 *
445  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
446  \$ result( 4 ) )
447 *
448 *+ TESTS 5, 6, and 7
449 * Use iterative refinement to improve the solution.
450 *
451  srnamt = 'CPORFS'
452  CALL cporfs( uplo, n, nrhs, a, lda, afac, lda, b,
453  \$ lda, x, lda, rwork, rwork( nrhs+1 ),
454  \$ work, rwork( 2*nrhs+1 ), info )
455 *
456 * Check error code from CPORFS.
457 *
458  IF( info.NE.0 )
459  \$ CALL alaerh( path, 'CPORFS', info, 0, uplo, n,
460  \$ n, -1, -1, nrhs, imat, nfail,
461  \$ nerrs, nout )
462 *
463  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
464  \$ result( 5 ) )
465  CALL cpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
466  \$ xact, lda, rwork, rwork( nrhs+1 ),
467  \$ result( 6 ) )
468 *
469 * Print information about the tests that did not pass
470 * the threshold.
471 *
472  DO 70 k = 3, 7
473  IF( result( k ).GE.thresh ) THEN
474  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
475  \$ CALL alahd( nout, path )
476  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
477  \$ imat, k, result( k )
478  nfail = nfail + 1
479  END IF
480  70 CONTINUE
481  nrun = nrun + 5
482  80 CONTINUE
483 *
484 *+ TEST 8
485 * Get an estimate of RCOND = 1/CNDNUM.
486 *
487  anorm = clanhe( '1', uplo, n, a, lda, rwork )
488  srnamt = 'CPOCON'
489  CALL cpocon( uplo, n, afac, lda, anorm, rcond, work,
490  \$ rwork, info )
491 *
492 * Check error code from CPOCON.
493 *
494  IF( info.NE.0 )
495  \$ CALL alaerh( path, 'CPOCON', info, 0, uplo, n, n,
496  \$ -1, -1, -1, imat, nfail, nerrs, nout )
497 *
498  result( 8 ) = sget06( rcond, rcondc )
499 *
500 * Print the test ratio if it is .GE. THRESH.
501 *
502  IF( result( 8 ).GE.thresh ) THEN
503  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
504  \$ CALL alahd( nout, path )
505  WRITE( nout, fmt = 9997 )uplo, n, imat, 8,
506  \$ result( 8 )
507  nfail = nfail + 1
508  END IF
509  nrun = nrun + 1
510  90 CONTINUE
511  100 CONTINUE
512  110 CONTINUE
513  120 CONTINUE
514 *
515 * Print a summary of the results.
516 *
517  CALL alasum( path, nout, nfail, nrun, nerrs )
518 *
519  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
520  \$ i2, ', test ', i2, ', ratio =', g12.5 )
521  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
522  \$ i2, ', test(', i2, ') =', g12.5 )
523  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
524  \$ ', test(', i2, ') =', g12.5 )
525  RETURN
526 *
527 * End of CCHKPO
528 *
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine cpot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPOT05
Definition: cpot05.f:165
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine cpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CPOT03
Definition: cpot03.f:126
subroutine cerrpo(PATH, NUNIT)
CERRPO
Definition: cerrpo.f:55
subroutine claipd(N, A, INDA, VINDA)
CLAIPD
Definition: claipd.f:83
subroutine cpot01(UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID)
CPOT01
Definition: cpot01.f:106
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:127
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clanhe.f:124
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cporfs(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CPORFS
Definition: cporfs.f:183
subroutine cpocon(UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)
CPOCON
Definition: cpocon.f:121
subroutine cpotrf(UPLO, N, A, LDA, INFO)
CPOTRF
Definition: cpotrf.f:107
subroutine cpotri(UPLO, N, A, LDA, INFO)
CPOTRI
Definition: cpotri.f:95
subroutine cpotrs(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CPOTRS
Definition: cpotrs.f:110
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: