LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ chet01_3()

 subroutine chet01_3 ( character UPLO, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldafac, * ) AFAC, integer LDAFAC, complex, dimension( * ) E, integer, dimension( * ) IPIV, complex, dimension( ldc, * ) C, integer LDC, real, dimension( * ) RWORK, real RESID )

CHET01_3

Purpose:
``` CHET01_3 reconstructs a Hermitian indefinite matrix A from its
block L*D*L' or U*D*U' factorization computed by CHETRF_RK
(or CHETRF_BK) and computes the residual
norm( C - A ) / ( N * norm(A) * EPS ),
where C is the reconstructed matrix and EPS is the machine epsilon.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular``` [in] N ``` N is INTEGER The number of rows and columns of the matrix A. N >= 0.``` [in] A ``` A is COMPLEX*16 array, dimension (LDA,N) The original Hermitian matrix A.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N)``` [in] AFAC ``` AFAC is COMPLEX array, dimension (LDAFAC,N) Diagonal of the block diagonal matrix D and factors U or L as computed by CHETRF_RK and CHETRF_BK: a) ONLY diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A.``` [in] LDAFAC ``` LDAFAC is INTEGER The leading dimension of the array AFAC. LDAFAC >= max(1,N).``` [in] E ``` E is COMPLEX array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.``` [in] IPIV ``` IPIV is INTEGER array, dimension (N) The pivot indices from CHETRF_RK (or CHETRF_BK).``` [out] C ` C is COMPLEX array, dimension (LDC,N)` [in] LDC ``` LDC is INTEGER The leading dimension of the array C. LDC >= max(1,N).``` [out] RWORK ` RWORK is REAL array, dimension (N)` [out] RESID ``` RESID is REAL If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )```

Definition at line 139 of file chet01_3.f.

141*
142* -- LAPACK test routine --
143* -- LAPACK is a software package provided by Univ. of Tennessee, --
144* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
145*
146* .. Scalar Arguments ..
147 CHARACTER UPLO
148 INTEGER LDA, LDAFAC, LDC, N
149 REAL RESID
150* ..
151* .. Array Arguments ..
152 INTEGER IPIV( * )
153 REAL RWORK( * )
154 COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
155 \$ E( * )
156* ..
157*
158* =====================================================================
159*
160* .. Parameters ..
161 REAL ZERO, ONE
162 parameter( zero = 0.0e+0, one = 1.0e+0 )
163 COMPLEX CZERO, CONE
164 parameter( czero = ( 0.0e+0, 0.0e+0 ),
165 \$ cone = ( 1.0e+0, 0.0e+0 ) )
166* ..
167* .. Local Scalars ..
168 INTEGER I, INFO, J
169 REAL ANORM, EPS
170* ..
171* .. External Functions ..
172 LOGICAL LSAME
173 REAL CLANHE, SLAMCH
174 EXTERNAL lsame, clanhe, slamch
175* ..
176* .. External Subroutines ..
178* ..
179* .. Intrinsic Functions ..
180 INTRINSIC aimag, real
181* ..
182* .. Executable Statements ..
183*
184* Quick exit if N = 0.
185*
186 IF( n.LE.0 ) THEN
187 resid = zero
188 RETURN
189 END IF
190*
191* a) Revert to multiplyers of L
192*
193 CALL csyconvf_rook( uplo, 'R', n, afac, ldafac, e, ipiv, info )
194*
195* 1) Determine EPS and the norm of A.
196*
197 eps = slamch( 'Epsilon' )
198 anorm = clanhe( '1', uplo, n, a, lda, rwork )
199*
200* Check the imaginary parts of the diagonal elements and return with
201* an error code if any are nonzero.
202*
203 DO j = 1, n
204 IF( aimag( afac( j, j ) ).NE.zero ) THEN
205 resid = one / eps
206 RETURN
207 END IF
208 END DO
209*
210* 2) Initialize C to the identity matrix.
211*
212 CALL claset( 'Full', n, n, czero, cone, c, ldc )
213*
214* 3) Call CLAVHE_ROOK to form the product D * U' (or D * L' ).
215*
216 CALL clavhe_rook( uplo, 'Conjugate', 'Non-unit', n, n, afac,
217 \$ ldafac, ipiv, c, ldc, info )
218*
219* 4) Call ZLAVHE_RK again to multiply by U (or L ).
220*
221 CALL clavhe_rook( uplo, 'No transpose', 'Unit', n, n, afac,
222 \$ ldafac, ipiv, c, ldc, info )
223*
224* 5) Compute the difference C - A .
225*
226 IF( lsame( uplo, 'U' ) ) THEN
227 DO j = 1, n
228 DO i = 1, j - 1
229 c( i, j ) = c( i, j ) - a( i, j )
230 END DO
231 c( j, j ) = c( j, j ) - real( a( j, j ) )
232 END DO
233 ELSE
234 DO j = 1, n
235 c( j, j ) = c( j, j ) - real( a( j, j ) )
236 DO i = j + 1, n
237 c( i, j ) = c( i, j ) - a( i, j )
238 END DO
239 END DO
240 END IF
241*
242* 6) Compute norm( C - A ) / ( N * norm(A) * EPS )
243*
244 resid = clanhe( '1', uplo, n, c, ldc, rwork )
245*
246 IF( anorm.LE.zero ) THEN
247 IF( resid.NE.zero )
248 \$ resid = one / eps
249 ELSE
250 resid = ( ( resid/real( n ) )/anorm ) / eps
251 END IF
252*
253* b) Convert to factor of L (or U)
254*
255 CALL csyconvf_rook( uplo, 'C', n, afac, ldafac, e, ipiv, info )
256*
257 RETURN
258*
259* End of CHET01_3
260*
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine clavhe_rook(UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CLAVHE_ROOK
Definition: clavhe_rook.f:156
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clanhe.f:124
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine csyconvf_rook(UPLO, WAY, N, A, LDA, E, IPIV, INFO)
CSYCONVF_ROOK
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: