LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ cdrvsy_rook()

 subroutine cdrvsy_rook ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CDRVSY_ROOK

Purpose:
` CDRVSY_ROOK tests the driver routines CSYSV_ROOK.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NRHS)` [out] WORK ` ` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 149 of file cdrvsy_rook.f.

152*
153* -- LAPACK test routine --
154* -- LAPACK is a software package provided by Univ. of Tennessee, --
155* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
156*
157* .. Scalar Arguments ..
158 LOGICAL TSTERR
159 INTEGER NMAX, NN, NOUT, NRHS
160 REAL THRESH
161* ..
162* .. Array Arguments ..
163 LOGICAL DOTYPE( * )
164 INTEGER IWORK( * ), NVAL( * )
165 REAL RWORK( * )
166 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
167 \$ WORK( * ), X( * ), XACT( * )
168* ..
169*
170* =====================================================================
171*
172* .. Parameters ..
173 REAL ONE, ZERO
174 parameter( one = 1.0e+0, zero = 0.0e+0 )
175 INTEGER NTYPES, NTESTS
176 parameter( ntypes = 11, ntests = 3 )
177 INTEGER NFACT
178 parameter( nfact = 2 )
179* ..
180* .. Local Scalars ..
181 LOGICAL ZEROT
182 CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
183 CHARACTER*3 MATPATH, PATH
184 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
185 \$ IZERO, J, K, KL, KU, LDA, LWORK, MODE, N,
186 \$ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
187 REAL AINVNM, ANORM, CNDNUM, RCONDC
188* ..
189* .. Local Arrays ..
190 CHARACTER FACTS( NFACT ), UPLOS( 2 )
191 INTEGER ISEED( 4 ), ISEEDY( 4 )
192 REAL RESULT( NTESTS )
193
194* ..
195* .. External Functions ..
196 REAL CLANSY
197 EXTERNAL clansy
198* ..
199* .. External Subroutines ..
200 EXTERNAL aladhd, alaerh, alasvm, xlaenv, cerrvx, cget04,
204* ..
205* .. Scalars in Common ..
206 LOGICAL LERR, OK
207 CHARACTER*32 SRNAMT
208 INTEGER INFOT, NUNIT
209* ..
210* .. Common blocks ..
211 COMMON / infoc / infot, nunit, ok, lerr
212 COMMON / srnamc / srnamt
213* ..
214* .. Intrinsic Functions ..
215 INTRINSIC max, min
216* ..
217* .. Data statements ..
218 DATA iseedy / 1988, 1989, 1990, 1991 /
219 DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
220* ..
221* .. Executable Statements ..
222*
223* Initialize constants and the random number seed.
224*
225* Test path
226*
227 path( 1: 1 ) = 'Complex precision'
228 path( 2: 3 ) = 'SR'
229*
230* Path to generate matrices
231*
232 matpath( 1: 1 ) = 'Complex precision'
233 matpath( 2: 3 ) = 'SY'
234*
235 nrun = 0
236 nfail = 0
237 nerrs = 0
238 DO 10 i = 1, 4
239 iseed( i ) = iseedy( i )
240 10 CONTINUE
241 lwork = max( 2*nmax, nmax*nrhs )
242*
243* Test the error exits
244*
245 IF( tsterr )
246 \$ CALL cerrvx( path, nout )
247 infot = 0
248*
249* Set the block size and minimum block size for which the block
250* routine should be used, which will be later returned by ILAENV.
251*
252 nb = 1
253 nbmin = 2
254 CALL xlaenv( 1, nb )
255 CALL xlaenv( 2, nbmin )
256*
257* Do for each value of N in NVAL
258*
259 DO 180 in = 1, nn
260 n = nval( in )
261 lda = max( n, 1 )
262 xtype = 'N'
263 nimat = ntypes
264 IF( n.LE.0 )
265 \$ nimat = 1
266*
267 DO 170 imat = 1, nimat
268*
269* Do the tests only if DOTYPE( IMAT ) is true.
270*
271 IF( .NOT.dotype( imat ) )
272 \$ GO TO 170
273*
274* Skip types 3, 4, 5, or 6 if the matrix size is too small.
275*
276 zerot = imat.GE.3 .AND. imat.LE.6
277 IF( zerot .AND. n.LT.imat-2 )
278 \$ GO TO 170
279*
280* Do first for UPLO = 'U', then for UPLO = 'L'
281*
282 DO 160 iuplo = 1, 2
283 uplo = uplos( iuplo )
284*
285 IF( imat.NE.ntypes ) THEN
286*
287* Begin generate the test matrix A.
288*
289* Set up parameters with CLATB4 for the matrix generator
290* based on the type of matrix to be generated.
291*
292 CALL clatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
293 \$ MODE, CNDNUM, DIST )
294*
295* Generate a matrix with CLATMS.
296*
297 srnamt = 'CLATMS'
298 CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
299 \$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
300 \$ WORK, INFO )
301*
302* Check error code from CLATMS and handle error.
303*
304 IF( info.NE.0 ) THEN
305 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
306 \$ -1, -1, -1, imat, nfail, nerrs, nout )
307 GO TO 160
308 END IF
309*
310* For types 3-6, zero one or more rows and columns of
311* the matrix to test that INFO is returned correctly.
312*
313 IF( zerot ) THEN
314 IF( imat.EQ.3 ) THEN
315 izero = 1
316 ELSE IF( imat.EQ.4 ) THEN
317 izero = n
318 ELSE
319 izero = n / 2 + 1
320 END IF
321*
322 IF( imat.LT.6 ) THEN
323*
324* Set row and column IZERO to zero.
325*
326 IF( iuplo.EQ.1 ) THEN
327 ioff = ( izero-1 )*lda
328 DO 20 i = 1, izero - 1
329 a( ioff+i ) = zero
330 20 CONTINUE
331 ioff = ioff + izero
332 DO 30 i = izero, n
333 a( ioff ) = zero
334 ioff = ioff + lda
335 30 CONTINUE
336 ELSE
337 ioff = izero
338 DO 40 i = 1, izero - 1
339 a( ioff ) = zero
340 ioff = ioff + lda
341 40 CONTINUE
342 ioff = ioff - izero
343 DO 50 i = izero, n
344 a( ioff+i ) = zero
345 50 CONTINUE
346 END IF
347 ELSE
348 IF( iuplo.EQ.1 ) THEN
349*
350* Set the first IZERO rows and columns to zero.
351*
352 ioff = 0
353 DO 70 j = 1, n
354 i2 = min( j, izero )
355 DO 60 i = 1, i2
356 a( ioff+i ) = zero
357 60 CONTINUE
358 ioff = ioff + lda
359 70 CONTINUE
360 ELSE
361*
362* Set the first IZERO rows and columns to zero.
363*
364 ioff = 0
365 DO 90 j = 1, n
366 i1 = max( j, izero )
367 DO 80 i = i1, n
368 a( ioff+i ) = zero
369 80 CONTINUE
370 ioff = ioff + lda
371 90 CONTINUE
372 END IF
373 END IF
374 ELSE
375 izero = 0
376 END IF
377*
378* End generate the test matrix A.
379*
380 ELSE
381*
382* IMAT = NTYPES: Use a special block diagonal matrix to
383* test alternate code for the 2-by-2 blocks.
384*
385 CALL clatsy( uplo, n, a, lda, iseed )
386 END IF
387*
388 DO 150 ifact = 1, nfact
389*
390* Do first for FACT = 'F', then for other values.
391*
392 fact = facts( ifact )
393*
394* Compute the condition number for comparison with
395* the value returned by CSYSVX_ROOK.
396*
397 IF( zerot ) THEN
398 IF( ifact.EQ.1 )
399 \$ GO TO 150
400 rcondc = zero
401*
402 ELSE IF( ifact.EQ.1 ) THEN
403*
404* Compute the 1-norm of A.
405*
406 anorm = clansy( '1', uplo, n, a, lda, rwork )
407*
408* Factor the matrix A.
409*
410
411 CALL clacpy( uplo, n, n, a, lda, afac, lda )
412 CALL csytrf_rook( uplo, n, afac, lda, iwork, work,
413 \$ lwork, info )
414*
415* Compute inv(A) and take its norm.
416*
417 CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
418 lwork = (n+nb+1)*(nb+3)
419 CALL csytri_rook( uplo, n, ainv, lda, iwork,
420 \$ work, info )
421 ainvnm = clansy( '1', uplo, n, ainv, lda, rwork )
422*
423* Compute the 1-norm condition number of A.
424*
425 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
426 rcondc = one
427 ELSE
428 rcondc = ( one / anorm ) / ainvnm
429 END IF
430 END IF
431*
432* Form an exact solution and set the right hand side.
433*
434 srnamt = 'CLARHS'
435 CALL clarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
436 \$ nrhs, a, lda, xact, lda, b, lda, iseed,
437 \$ info )
438 xtype = 'C'
439*
440* --- Test CSYSV_ROOK ---
441*
442 IF( ifact.EQ.2 ) THEN
443 CALL clacpy( uplo, n, n, a, lda, afac, lda )
444 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
445*
446* Factor the matrix and solve the system using
447* CSYSV_ROOK.
448*
449 srnamt = 'CSYSV_ROOK'
450 CALL csysv_rook( uplo, n, nrhs, afac, lda, iwork,
451 \$ x, lda, work, lwork, info )
452*
453* Adjust the expected value of INFO to account for
454* pivoting.
455*
456 k = izero
457 IF( k.GT.0 ) THEN
458 100 CONTINUE
459 IF( iwork( k ).LT.0 ) THEN
460 IF( iwork( k ).NE.-k ) THEN
461 k = -iwork( k )
462 GO TO 100
463 END IF
464 ELSE IF( iwork( k ).NE.k ) THEN
465 k = iwork( k )
466 GO TO 100
467 END IF
468 END IF
469*
470* Check error code from CSYSV_ROOK and handle error.
471*
472 IF( info.NE.k ) THEN
473 CALL alaerh( path, 'CSYSV_ROOK', info, k, uplo,
474 \$ n, n, -1, -1, nrhs, imat, nfail,
475 \$ nerrs, nout )
476 GO TO 120
477 ELSE IF( info.NE.0 ) THEN
478 GO TO 120
479 END IF
480*
481*+ TEST 1 Reconstruct matrix from factors and compute
482* residual.
483*
484 CALL csyt01_rook( uplo, n, a, lda, afac, lda,
485 \$ iwork, ainv, lda, rwork,
486 \$ result( 1 ) )
487*
488*+ TEST 2 Compute residual of the computed solution.
489*
490 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
491 CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
492 \$ lda, rwork, result( 2 ) )
493*
494*+ TEST 3
495* Check solution from generated exact solution.
496*
497 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
498 \$ result( 3 ) )
499 nt = 3
500*
501* Print information about the tests that did not pass
502* the threshold.
503*
504 DO 110 k = 1, nt
505 IF( result( k ).GE.thresh ) THEN
506 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
507 \$ CALL aladhd( nout, path )
508 WRITE( nout, fmt = 9999 )'CSYSV_ROOK', uplo,
509 \$ n, imat, k, result( k )
510 nfail = nfail + 1
511 END IF
512 110 CONTINUE
513 nrun = nrun + nt
514 120 CONTINUE
515 END IF
516*
517 150 CONTINUE
518*
519 160 CONTINUE
520 170 CONTINUE
521 180 CONTINUE
522*
523* Print a summary of the results.
524*
525 CALL alasvm( path, nout, nfail, nrun, nerrs )
526*
527 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
528 \$ ', test ', i2, ', ratio =', g12.5 )
529 RETURN
530*
531* End of CDRVSY_ROOK
532*
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine cpot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPOT05
Definition: cpot05.f:165
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine csyt01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01_ROOK
Definition: csyt01_rook.f:125
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:55
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:127
subroutine clatsy(UPLO, N, X, LDX, ISEED)
CLATSY
Definition: clatsy.f:89
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
real function clansy(NORM, UPLO, N, A, LDA, WORK)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clansy.f:123
subroutine csytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF_ROOK
Definition: csytrf_rook.f:208
subroutine csytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
CSYTRI_ROOK
Definition: csytri_rook.f:129
subroutine csysv_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CSYSV_ROOK computes the solution to system of linear equations A * X = B for SY matrices
Definition: csysv_rook.f:204
Here is the call graph for this function:
Here is the caller graph for this function: