LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlauu2 | ( | character | uplo, |
integer | n, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
integer | info ) |
DLAUU2 computes the product UUH or LHL, where U and L are upper or lower triangular matrices (unblocked algorithm).
Download DLAUU2 + dependencies [TGZ] [ZIP] [TXT]
!> !> DLAUU2 computes the product U * U**T or L**T * L, where the triangular !> factor U or L is stored in the upper or lower triangular part of !> the array A. !> !> If UPLO = 'U' or 'u' then the upper triangle of the result is stored, !> overwriting the factor U in A. !> If UPLO = 'L' or 'l' then the lower triangle of the result is stored, !> overwriting the factor L in A. !> !> This is the unblocked form of the algorithm, calling Level 2 BLAS. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the triangular factor stored in the array A !> is upper or lower triangular: !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
[in] | N | !> N is INTEGER !> The order of the triangular factor U or L. N >= 0. !> |
[in,out] | A | !> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the triangular factor U or L. !> On exit, if UPLO = 'U', the upper triangle of A is !> overwritten with the upper triangle of the product U * U**T; !> if UPLO = 'L', the lower triangle of A is overwritten with !> the lower triangle of the product L**T * L. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -k, the k-th argument had an illegal value !> |
Definition at line 99 of file dlauu2.f.