LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ ssyevd_2stage()

 subroutine ssyevd_2stage ( character JOBZ, character UPLO, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) W, real, dimension( * ) WORK, integer LWORK, integer, dimension( * ) IWORK, integer LIWORK, integer INFO )

SSYEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices

Purpose:
SSYEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A using the 2stage technique for
the reduction to tridiagonal. If eigenvectors are desired, it uses a
divide and conquer algorithm.

The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Parameters
 [in] JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. Not available in this release. [in] UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. [in] N N is INTEGER The order of the matrix A. N >= 0. [in,out] A A is REAL array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed. [in] LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). [out] W W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. [out] WORK WORK is REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. [in] LWORK LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be queried. LWORK = MAX(1, dimension) where dimension = max(stage1,stage2) + (KD+1)*N + 2*N+1 = N*KD + N*max(KD+1,FACTOPTNB) + max(2*KD*KD, KD*NTHREADS) + (KD+1)*N + 2*N+1 where KD is the blocking size of the reduction, FACTOPTNB is the blocking used by the QR or LQ algorithm, usually FACTOPTNB=128 is a good choice NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1. If JOBZ = 'V' and N > 1, LWORK must be at least 1 + 6*N + 2*N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. [out] IWORK IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. [in] LIWORK LIWORK is INTEGER The dimension of the array IWORK. If N <= 1, LIWORK must be at least 1. If JOBZ = 'N' and N > 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. [out] INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i and JOBZ = 'N', then the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; if INFO = i and JOBZ = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee
Modified description of INFO. Sven, 16 Feb 05.
Further Details:
All details about the 2stage techniques are available in:

Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
Parallel reduction to condensed forms for symmetric eigenvalue problems
using aggregated fine-grained and memory-aware kernels. In Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC '11), New York, NY, USA,
Article 8 , 11 pages.
http://doi.acm.org/10.1145/2063384.2063394

A. Haidar, J. Kurzak, P. Luszczek, 2013.
An improved parallel singular value algorithm and its implementation
for multicore hardware, In Proceedings of 2013 International Conference
for High Performance Computing, Networking, Storage and Analysis (SC '13).
Article 90, 12 pages.
http://doi.acm.org/10.1145/2503210.2503292

A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
A novel hybrid CPU-GPU generalized eigensolver for electronic structure
calculations based on fine-grained memory aware tasks.
International Journal of High Performance Computing Applications.
Volume 28 Issue 2, Pages 196-209, May 2014.
http://hpc.sagepub.com/content/28/2/196

Definition at line 225 of file ssyevd_2stage.f.

227*
228 IMPLICIT NONE
229*
230* -- LAPACK driver routine --
231* -- LAPACK is a software package provided by Univ. of Tennessee, --
232* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
233*
234* .. Scalar Arguments ..
235 CHARACTER JOBZ, UPLO
236 INTEGER INFO, LDA, LIWORK, LWORK, N
237* ..
238* .. Array Arguments ..
239 INTEGER IWORK( * )
240 REAL A( LDA, * ), W( * ), WORK( * )
241* ..
242*
243* =====================================================================
244*
245* .. Parameters ..
246 REAL ZERO, ONE
247 parameter( zero = 0.0e+0, one = 1.0e+0 )
248* ..
249* .. Local Scalars ..
250*
251 LOGICAL LOWER, LQUERY, WANTZ
252 INTEGER IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
253 \$ LIWMIN, LLWORK, LLWRK2, LWMIN,
254 \$ LHTRD, LWTRD, KD, IB, INDHOUS
255 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
256 \$ SMLNUM
257* ..
258* .. External Functions ..
259 LOGICAL LSAME
260 INTEGER ILAENV2STAGE
261 REAL SLAMCH, SLANSY
262 EXTERNAL lsame, slamch, slansy, ilaenv2stage
263* ..
264* .. External Subroutines ..
265 EXTERNAL slacpy, slascl, sormtr, sscal, sstedc, ssterf,
267* ..
268* .. Intrinsic Functions ..
269 INTRINSIC max, sqrt
270* ..
271* .. Executable Statements ..
272*
273* Test the input parameters.
274*
275 wantz = lsame( jobz, 'V' )
276 lower = lsame( uplo, 'L' )
277 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
278*
279 info = 0
280 IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
281 info = -1
282 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
283 info = -2
284 ELSE IF( n.LT.0 ) THEN
285 info = -3
286 ELSE IF( lda.LT.max( 1, n ) ) THEN
287 info = -5
288 END IF
289*
290 IF( info.EQ.0 ) THEN
291 IF( n.LE.1 ) THEN
292 liwmin = 1
293 lwmin = 1
294 ELSE
295 kd = ilaenv2stage( 1, 'SSYTRD_2STAGE', jobz,
296 \$ n, -1, -1, -1 )
297 ib = ilaenv2stage( 2, 'SSYTRD_2STAGE', jobz,
298 \$ n, kd, -1, -1 )
299 lhtrd = ilaenv2stage( 3, 'SSYTRD_2STAGE', jobz,
300 \$ n, kd, ib, -1 )
301 lwtrd = ilaenv2stage( 4, 'SSYTRD_2STAGE', jobz,
302 \$ n, kd, ib, -1 )
303 IF( wantz ) THEN
304 liwmin = 3 + 5*n
305 lwmin = 1 + 6*n + 2*n**2
306 ELSE
307 liwmin = 1
308 lwmin = 2*n + 1 + lhtrd + lwtrd
309 END IF
310 END IF
311 work( 1 ) = lwmin
312 iwork( 1 ) = liwmin
313*
314 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
315 info = -8
316 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
317 info = -10
318 END IF
319 END IF
320*
321 IF( info.NE.0 ) THEN
322 CALL xerbla( 'SSYEVD_2STAGE', -info )
323 RETURN
324 ELSE IF( lquery ) THEN
325 RETURN
326 END IF
327*
328* Quick return if possible
329*
330 IF( n.EQ.0 )
331 \$ RETURN
332*
333 IF( n.EQ.1 ) THEN
334 w( 1 ) = a( 1, 1 )
335 IF( wantz )
336 \$ a( 1, 1 ) = one
337 RETURN
338 END IF
339*
340* Get machine constants.
341*
342 safmin = slamch( 'Safe minimum' )
343 eps = slamch( 'Precision' )
344 smlnum = safmin / eps
345 bignum = one / smlnum
346 rmin = sqrt( smlnum )
347 rmax = sqrt( bignum )
348*
349* Scale matrix to allowable range, if necessary.
350*
351 anrm = slansy( 'M', uplo, n, a, lda, work )
352 iscale = 0
353 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
354 iscale = 1
355 sigma = rmin / anrm
356 ELSE IF( anrm.GT.rmax ) THEN
357 iscale = 1
358 sigma = rmax / anrm
359 END IF
360 IF( iscale.EQ.1 )
361 \$ CALL slascl( uplo, 0, 0, one, sigma, n, n, a, lda, info )
362*
363* Call SSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
364*
365 inde = 1
366 indtau = inde + n
367 indhous = indtau + n
368 indwrk = indhous + lhtrd
369 llwork = lwork - indwrk + 1
370 indwk2 = indwrk + n*n
371 llwrk2 = lwork - indwk2 + 1
372*
373 CALL ssytrd_2stage( jobz, uplo, n, a, lda, w, work( inde ),
374 \$ work( indtau ), work( indhous ), lhtrd,
375 \$ work( indwrk ), llwork, iinfo )
376*
377* For eigenvalues only, call SSTERF. For eigenvectors, first call
378* SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
379* tridiagonal matrix, then call SORMTR to multiply it by the
380* Householder transformations stored in A.
381*
382 IF( .NOT.wantz ) THEN
383 CALL ssterf( n, w, work( inde ), info )
384 ELSE
385* Not available in this release, and argument checking should not
386* let it getting here
387 RETURN
388 CALL sstedc( 'I', n, w, work( inde ), work( indwrk ), n,
389 \$ work( indwk2 ), llwrk2, iwork, liwork, info )
390 CALL sormtr( 'L', uplo, 'N', n, n, a, lda, work( indtau ),
391 \$ work( indwrk ), n, work( indwk2 ), llwrk2, iinfo )
392 CALL slacpy( 'A', n, n, work( indwrk ), n, a, lda )
393 END IF
394*
395* If matrix was scaled, then rescale eigenvalues appropriately.
396*
397 IF( iscale.EQ.1 )
398 \$ CALL sscal( n, one / sigma, w, 1 )
399*
400 work( 1 ) = lwmin
401 iwork( 1 ) = liwmin
402*
403 RETURN
404*
405* End of SSYEVD_2STAGE
406*
subroutine slascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: slascl.f:143
integer function ilaenv2stage(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV2STAGE
Definition: ilaenv2stage.f:149
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:103
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine sstedc(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSTEDC
Definition: sstedc.f:188
subroutine ssterf(N, D, E, INFO)
SSTERF
Definition: ssterf.f:86
subroutine sormtr(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
SORMTR
Definition: sormtr.f:172
real function slansy(NORM, UPLO, N, A, LDA, WORK)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: slansy.f:122
subroutine ssytrd_2stage(VECT, UPLO, N, A, LDA, D, E, TAU, HOUS2, LHOUS2, WORK, LWORK, INFO)
SSYTRD_2STAGE
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:79
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: