![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine slatm6 | ( | integer | type, |
integer | n, | ||
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( lda, * ) | b, | ||
real, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
real, dimension( ldy, * ) | y, | ||
integer | ldy, | ||
real | alpha, | ||
real | beta, | ||
real | wx, | ||
real | wy, | ||
real, dimension( * ) | s, | ||
real, dimension( * ) | dif ) |
SLATM6
!> !> SLATM6 generates test matrices for the generalized eigenvalue !> problem, their corresponding right and left eigenvector matrices, !> and also reciprocal condition numbers for all eigenvalues and !> the reciprocal condition numbers of eigenvectors corresponding to !> the 1th and 5th eigenvalues. !> !> Test Matrices !> ============= !> !> Two kinds of test matrix pairs !> !> (A, B) = inverse(YH) * (Da, Db) * inverse(X) !> !> are used in the tests: !> !> Type 1: !> Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 !> 0 2+a 0 0 0 0 1 0 0 0 !> 0 0 3+a 0 0 0 0 1 0 0 !> 0 0 0 4+a 0 0 0 0 1 0 !> 0 0 0 0 5+a , 0 0 0 0 1 , and !> !> Type 2: !> Da = 1 -1 0 0 0 Db = 1 0 0 0 0 !> 1 1 0 0 0 0 1 0 0 0 !> 0 0 1 0 0 0 0 1 0 0 !> 0 0 0 1+a 1+b 0 0 0 1 0 !> 0 0 0 -1-b 1+a , 0 0 0 0 1 . !> !> In both cases the same inverse(YH) and inverse(X) are used to compute !> (A, B), giving the exact eigenvectors to (A,B) as (YH, X): !> !> YH: = 1 0 -y y -y X = 1 0 -x -x x !> 0 1 -y y -y 0 1 x -x -x !> 0 0 1 0 0 0 0 1 0 0 !> 0 0 0 1 0 0 0 0 1 0 !> 0 0 0 0 1, 0 0 0 0 1 , !> !> where a, b, x and y will have all values independently of each other. !>
[in] | TYPE | !> TYPE is INTEGER !> Specifies the problem type (see further details). !> |
[in] | N | !> N is INTEGER !> Size of the matrices A and B. !> |
[out] | A | !> A is REAL array, dimension (LDA, N). !> On exit A N-by-N is initialized according to TYPE. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of A and of B. !> |
[out] | B | !> B is REAL array, dimension (LDA, N). !> On exit B N-by-N is initialized according to TYPE. !> |
[out] | X | !> X is REAL array, dimension (LDX, N). !> On exit X is the N-by-N matrix of right eigenvectors. !> |
[in] | LDX | !> LDX is INTEGER !> The leading dimension of X. !> |
[out] | Y | !> Y is REAL array, dimension (LDY, N). !> On exit Y is the N-by-N matrix of left eigenvectors. !> |
[in] | LDY | !> LDY is INTEGER !> The leading dimension of Y. !> |
[in] | ALPHA | !> ALPHA is REAL !> |
[in] | BETA | !> BETA is REAL !> !> Weighting constants for matrix A. !> |
[in] | WX | !> WX is REAL !> Constant for right eigenvector matrix. !> |
[in] | WY | !> WY is REAL !> Constant for left eigenvector matrix. !> |
[out] | S | !> S is REAL array, dimension (N) !> S(i) is the reciprocal condition number for eigenvalue i. !> |
[out] | DIF | !> DIF is REAL array, dimension (N) !> DIF(i) is the reciprocal condition number for eigenvector i. !> |
Definition at line 174 of file slatm6.f.