LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cunml2()

subroutine cunml2 ( character side,
character trans,
integer m,
integer n,
integer k,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( ldc, * ) c,
integer ldc,
complex, dimension( * ) work,
integer info )

CUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf (unblocked algorithm).

Download CUNML2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CUNML2 overwrites the general complex m-by-n matrix C with
!>
!>       Q * C  if SIDE = 'L' and TRANS = 'N', or
!>
!>       Q**H* C  if SIDE = 'L' and TRANS = 'C', or
!>
!>       C * Q  if SIDE = 'R' and TRANS = 'N', or
!>
!>       C * Q**H if SIDE = 'R' and TRANS = 'C',
!>
!> where Q is a complex unitary matrix defined as the product of k
!> elementary reflectors
!>
!>       Q = H(k)**H . . . H(2)**H H(1)**H
!>
!> as returned by CGELQF. Q is of order m if SIDE = 'L' and of order n
!> if SIDE = 'R'.
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**H from the Left
!>          = 'R': apply Q or Q**H from the Right
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          = 'N': apply Q  (No transpose)
!>          = 'C': apply Q**H (Conjugate transpose)
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix C. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!> 
[in]A
!>          A is COMPLEX array, dimension
!>                               (LDA,M) if SIDE = 'L',
!>                               (LDA,N) if SIDE = 'R'
!>          The i-th row must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          CGELQF in the first k rows of its array argument A.
!>          A is modified by the routine but restored on exit.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,K).
!> 
[in]TAU
!>          TAU is COMPLEX array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by CGELQF.
!> 
[in,out]C
!>          C is COMPLEX array, dimension (LDC,N)
!>          On entry, the m-by-n matrix C.
!>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension
!>                                   (N) if SIDE = 'L',
!>                                   (M) if SIDE = 'R'
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 155 of file cunml2.f.

157*
158* -- LAPACK computational routine --
159* -- LAPACK is a software package provided by Univ. of Tennessee, --
160* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161*
162* .. Scalar Arguments ..
163 CHARACTER SIDE, TRANS
164 INTEGER INFO, K, LDA, LDC, M, N
165* ..
166* .. Array Arguments ..
167 COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
168* ..
169*
170* =====================================================================
171*
172* .. Local Scalars ..
173 LOGICAL LEFT, NOTRAN
174 INTEGER I, I1, I2, I3, IC, JC, MI, NI, NQ
175 COMPLEX TAUI
176* ..
177* .. External Functions ..
178 LOGICAL LSAME
179 EXTERNAL lsame
180* ..
181* .. External Subroutines ..
182 EXTERNAL clacgv, clarf1f, xerbla
183* ..
184* .. Intrinsic Functions ..
185 INTRINSIC conjg, max
186* ..
187* .. Executable Statements ..
188*
189* Test the input arguments
190*
191 info = 0
192 left = lsame( side, 'L' )
193 notran = lsame( trans, 'N' )
194*
195* NQ is the order of Q
196*
197 IF( left ) THEN
198 nq = m
199 ELSE
200 nq = n
201 END IF
202 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
203 info = -1
204 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
205 info = -2
206 ELSE IF( m.LT.0 ) THEN
207 info = -3
208 ELSE IF( n.LT.0 ) THEN
209 info = -4
210 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
211 info = -5
212 ELSE IF( lda.LT.max( 1, k ) ) THEN
213 info = -7
214 ELSE IF( ldc.LT.max( 1, m ) ) THEN
215 info = -10
216 END IF
217 IF( info.NE.0 ) THEN
218 CALL xerbla( 'CUNML2', -info )
219 RETURN
220 END IF
221*
222* Quick return if possible
223*
224 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
225 $ RETURN
226*
227 IF( ( left .AND. notran .OR. .NOT.left .AND. .NOT.notran ) ) THEN
228 i1 = 1
229 i2 = k
230 i3 = 1
231 ELSE
232 i1 = k
233 i2 = 1
234 i3 = -1
235 END IF
236*
237 IF( left ) THEN
238 ni = n
239 jc = 1
240 ELSE
241 mi = m
242 ic = 1
243 END IF
244*
245 DO 10 i = i1, i2, i3
246 IF( left ) THEN
247*
248* H(i) or H(i)**H is applied to C(i:m,1:n)
249*
250 mi = m - i + 1
251 ic = i
252 ELSE
253*
254* H(i) or H(i)**H is applied to C(1:m,i:n)
255*
256 ni = n - i + 1
257 jc = i
258 END IF
259*
260* Apply H(i) or H(i)**H
261*
262 IF( notran ) THEN
263 taui = conjg( tau( i ) )
264 ELSE
265 taui = tau( i )
266 END IF
267 IF( i.LT.nq )
268 $ CALL clacgv( nq-i, a( i, i+1 ), lda )
269 CALL clarf1f( side, mi, ni, a( i, i ), lda, taui, c( ic,
270 $ jc ), ldc, work )
271 IF( i.LT.nq )
272 $ CALL clacgv( nq-i, a( i, i+1 ), lda )
273 10 CONTINUE
274 RETURN
275*
276* End of CUNML2
277*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1f(side, m, n, v, incv, tau, c, ldc, work)
CLARF1F applies an elementary reflector to a general rectangular
Definition clarf1f.f:126
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: