LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ slapmr()

subroutine slapmr ( logical  forwrd,
integer  m,
integer  n,
real, dimension( ldx, * )  x,
integer  ldx,
integer, dimension( * )  k 
)

SLAPMR rearranges rows of a matrix as specified by a permutation vector.

Download SLAPMR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SLAPMR rearranges the rows of the M by N matrix X as specified
 by the permutation K(1),K(2),...,K(M) of the integers 1,...,M.
 If FORWRD = .TRUE.,  forward permutation:

      X(K(I),*) is moved X(I,*) for I = 1,2,...,M.

 If FORWRD = .FALSE., backward permutation:

      X(I,*) is moved to X(K(I),*) for I = 1,2,...,M.
Parameters
[in]FORWRD
          FORWRD is LOGICAL
          = .TRUE., forward permutation
          = .FALSE., backward permutation
[in]M
          M is INTEGER
          The number of rows of the matrix X. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix X. N >= 0.
[in,out]X
          X is REAL array, dimension (LDX,N)
          On entry, the M by N matrix X.
          On exit, X contains the permuted matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X, LDX >= MAX(1,M).
[in,out]K
          K is INTEGER array, dimension (M)
          On entry, K contains the permutation vector. K is used as
          internal workspace, but reset to its original value on
          output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 103 of file slapmr.f.

104*
105* -- LAPACK auxiliary routine --
106* -- LAPACK is a software package provided by Univ. of Tennessee, --
107* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
108*
109* .. Scalar Arguments ..
110 LOGICAL FORWRD
111 INTEGER LDX, M, N
112* ..
113* .. Array Arguments ..
114 INTEGER K( * )
115 REAL X( LDX, * )
116* ..
117*
118* =====================================================================
119*
120* .. Local Scalars ..
121 INTEGER I, IN, J, JJ
122 REAL TEMP
123* ..
124* .. Executable Statements ..
125*
126 IF( m.LE.1 )
127 $ RETURN
128*
129 DO 10 i = 1, m
130 k( i ) = -k( i )
131 10 CONTINUE
132*
133 IF( forwrd ) THEN
134*
135* Forward permutation
136*
137 DO 50 i = 1, m
138*
139 IF( k( i ).GT.0 )
140 $ GO TO 40
141*
142 j = i
143 k( j ) = -k( j )
144 in = k( j )
145*
146 20 CONTINUE
147 IF( k( in ).GT.0 )
148 $ GO TO 40
149*
150 DO 30 jj = 1, n
151 temp = x( j, jj )
152 x( j, jj ) = x( in, jj )
153 x( in, jj ) = temp
154 30 CONTINUE
155*
156 k( in ) = -k( in )
157 j = in
158 in = k( in )
159 GO TO 20
160*
161 40 CONTINUE
162*
163 50 CONTINUE
164*
165 ELSE
166*
167* Backward permutation
168*
169 DO 90 i = 1, m
170*
171 IF( k( i ).GT.0 )
172 $ GO TO 80
173*
174 k( i ) = -k( i )
175 j = k( i )
176 60 CONTINUE
177 IF( j.EQ.i )
178 $ GO TO 80
179*
180 DO 70 jj = 1, n
181 temp = x( i, jj )
182 x( i, jj ) = x( j, jj )
183 x( j, jj ) = temp
184 70 CONTINUE
185*
186 k( j ) = -k( j )
187 j = k( j )
188 GO TO 60
189*
190 80 CONTINUE
191*
192 90 CONTINUE
193*
194 END IF
195*
196 RETURN
197*
198* End of SLAPMR
199*
Here is the caller graph for this function: