LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlaic1()

subroutine zlaic1 ( integer job,
integer j,
complex*16, dimension( j ) x,
double precision sest,
complex*16, dimension( j ) w,
complex*16 gamma,
double precision sestpr,
complex*16 s,
complex*16 c )

ZLAIC1 applies one step of incremental condition estimation.

Download ZLAIC1 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZLAIC1 applies one step of incremental condition estimation in
!> its simplest version:
!>
!> Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
!> lower triangular matrix L, such that
!>          twonorm(L*x) = sest
!> Then ZLAIC1 computes sestpr, s, c such that
!> the vector
!>                 [ s*x ]
!>          xhat = [  c  ]
!> is an approximate singular vector of
!>                 [ L       0  ]
!>          Lhat = [ w**H gamma ]
!> in the sense that
!>          twonorm(Lhat*xhat) = sestpr.
!>
!> Depending on JOB, an estimate for the largest or smallest singular
!> value is computed.
!>
!> Note that [s c]**H and sestpr**2 is an eigenpair of the system
!>
!>     diag(sest*sest, 0) + [alpha  gamma] * [ conjg(alpha) ]
!>                                           [ conjg(gamma) ]
!>
!> where  alpha =  x**H * w.
!> 
Parameters
[in]JOB
!>          JOB is INTEGER
!>          = 1: an estimate for the largest singular value is computed.
!>          = 2: an estimate for the smallest singular value is computed.
!> 
[in]J
!>          J is INTEGER
!>          Length of X and W
!> 
[in]X
!>          X is COMPLEX*16 array, dimension (J)
!>          The j-vector x.
!> 
[in]SEST
!>          SEST is DOUBLE PRECISION
!>          Estimated singular value of j by j matrix L
!> 
[in]W
!>          W is COMPLEX*16 array, dimension (J)
!>          The j-vector w.
!> 
[in]GAMMA
!>          GAMMA is COMPLEX*16
!>          The diagonal element gamma.
!> 
[out]SESTPR
!>          SESTPR is DOUBLE PRECISION
!>          Estimated singular value of (j+1) by (j+1) matrix Lhat.
!> 
[out]S
!>          S is COMPLEX*16
!>          Sine needed in forming xhat.
!> 
[out]C
!>          C is COMPLEX*16
!>          Cosine needed in forming xhat.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 132 of file zlaic1.f.

133*
134* -- LAPACK auxiliary routine --
135* -- LAPACK is a software package provided by Univ. of Tennessee, --
136* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
137*
138* .. Scalar Arguments ..
139 INTEGER J, JOB
140 DOUBLE PRECISION SEST, SESTPR
141 COMPLEX*16 C, GAMMA, S
142* ..
143* .. Array Arguments ..
144 COMPLEX*16 W( J ), X( J )
145* ..
146*
147* =====================================================================
148*
149* .. Parameters ..
150 DOUBLE PRECISION ZERO, ONE, TWO
151 parameter( zero = 0.0d0, one = 1.0d0, two = 2.0d0 )
152 DOUBLE PRECISION HALF, FOUR
153 parameter( half = 0.5d0, four = 4.0d0 )
154* ..
155* .. Local Scalars ..
156 DOUBLE PRECISION ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2,
157 $ SCL, T, TEST, TMP, ZETA1, ZETA2
158 COMPLEX*16 ALPHA, COSINE, SINE
159* ..
160* .. Intrinsic Functions ..
161 INTRINSIC abs, dconjg, max, sqrt
162* ..
163* .. External Functions ..
164 DOUBLE PRECISION DLAMCH
165 COMPLEX*16 ZDOTC
166 EXTERNAL dlamch, zdotc
167* ..
168* .. Executable Statements ..
169*
170 eps = dlamch( 'Epsilon' )
171 alpha = zdotc( j, x, 1, w, 1 )
172*
173 absalp = abs( alpha )
174 absgam = abs( gamma )
175 absest = abs( sest )
176*
177 IF( job.EQ.1 ) THEN
178*
179* Estimating largest singular value
180*
181* special cases
182*
183 IF( sest.EQ.zero ) THEN
184 s1 = max( absgam, absalp )
185 IF( s1.EQ.zero ) THEN
186 s = zero
187 c = one
188 sestpr = zero
189 ELSE
190 s = alpha / s1
191 c = gamma / s1
192 tmp = dble( sqrt( s*dconjg( s )+c*dconjg( c ) ) )
193 s = s / tmp
194 c = c / tmp
195 sestpr = s1*tmp
196 END IF
197 RETURN
198 ELSE IF( absgam.LE.eps*absest ) THEN
199 s = one
200 c = zero
201 tmp = max( absest, absalp )
202 s1 = absest / tmp
203 s2 = absalp / tmp
204 sestpr = tmp*sqrt( s1*s1+s2*s2 )
205 RETURN
206 ELSE IF( absalp.LE.eps*absest ) THEN
207 s1 = absgam
208 s2 = absest
209 IF( s1.LE.s2 ) THEN
210 s = one
211 c = zero
212 sestpr = s2
213 ELSE
214 s = zero
215 c = one
216 sestpr = s1
217 END IF
218 RETURN
219 ELSE IF( absest.LE.eps*absalp .OR. absest.LE.eps*absgam ) THEN
220 s1 = absgam
221 s2 = absalp
222 IF( s1.LE.s2 ) THEN
223 tmp = s1 / s2
224 scl = sqrt( one+tmp*tmp )
225 sestpr = s2*scl
226 s = ( alpha / s2 ) / scl
227 c = ( gamma / s2 ) / scl
228 ELSE
229 tmp = s2 / s1
230 scl = sqrt( one+tmp*tmp )
231 sestpr = s1*scl
232 s = ( alpha / s1 ) / scl
233 c = ( gamma / s1 ) / scl
234 END IF
235 RETURN
236 ELSE
237*
238* normal case
239*
240 zeta1 = absalp / absest
241 zeta2 = absgam / absest
242*
243 b = ( one-zeta1*zeta1-zeta2*zeta2 )*half
244 c = zeta1*zeta1
245 IF( b.GT.zero ) THEN
246 t = dble( c / ( b+sqrt( b*b+c ) ) )
247 ELSE
248 t = dble( sqrt( b*b+c ) - b )
249 END IF
250*
251 sine = -( alpha / absest ) / t
252 cosine = -( gamma / absest ) / ( one+t )
253 tmp = dble( sqrt( sine * dconjg( sine )
254 $ + cosine * dconjg( cosine ) ) )
255
256 s = sine / tmp
257 c = cosine / tmp
258 sestpr = sqrt( t+one )*absest
259 RETURN
260 END IF
261*
262 ELSE IF( job.EQ.2 ) THEN
263*
264* Estimating smallest singular value
265*
266* special cases
267*
268 IF( sest.EQ.zero ) THEN
269 sestpr = zero
270 IF( max( absgam, absalp ).EQ.zero ) THEN
271 sine = one
272 cosine = zero
273 ELSE
274 sine = -dconjg( gamma )
275 cosine = dconjg( alpha )
276 END IF
277 s1 = max( abs( sine ), abs( cosine ) )
278 s = sine / s1
279 c = cosine / s1
280 tmp = dble( sqrt( s*dconjg( s )+c*dconjg( c ) ) )
281 s = s / tmp
282 c = c / tmp
283 RETURN
284 ELSE IF( absgam.LE.eps*absest ) THEN
285 s = zero
286 c = one
287 sestpr = absgam
288 RETURN
289 ELSE IF( absalp.LE.eps*absest ) THEN
290 s1 = absgam
291 s2 = absest
292 IF( s1.LE.s2 ) THEN
293 s = zero
294 c = one
295 sestpr = s1
296 ELSE
297 s = one
298 c = zero
299 sestpr = s2
300 END IF
301 RETURN
302 ELSE IF( absest.LE.eps*absalp .OR. absest.LE.eps*absgam ) THEN
303 s1 = absgam
304 s2 = absalp
305 IF( s1.LE.s2 ) THEN
306 tmp = s1 / s2
307 scl = sqrt( one+tmp*tmp )
308 sestpr = absest*( tmp / scl )
309 s = -( dconjg( gamma ) / s2 ) / scl
310 c = ( dconjg( alpha ) / s2 ) / scl
311 ELSE
312 tmp = s2 / s1
313 scl = sqrt( one+tmp*tmp )
314 sestpr = absest / scl
315 s = -( dconjg( gamma ) / s1 ) / scl
316 c = ( dconjg( alpha ) / s1 ) / scl
317 END IF
318 RETURN
319 ELSE
320*
321* normal case
322*
323 zeta1 = absalp / absest
324 zeta2 = absgam / absest
325*
326 norma = max( one+zeta1*zeta1+zeta1*zeta2,
327 $ zeta1*zeta2+zeta2*zeta2 )
328*
329* See if root is closer to zero or to ONE
330*
331 test = one + two*( zeta1-zeta2 )*( zeta1+zeta2 )
332 IF( test.GE.zero ) THEN
333*
334* root is close to zero, compute directly
335*
336 b = ( zeta1*zeta1+zeta2*zeta2+one )*half
337 c = zeta2*zeta2
338 t = dble( c / ( b+sqrt( abs( b*b-c ) ) ) )
339 sine = ( alpha / absest ) / ( one-t )
340 cosine = -( gamma / absest ) / t
341 sestpr = sqrt( t+four*eps*eps*norma )*absest
342 ELSE
343*
344* root is closer to ONE, shift by that amount
345*
346 b = ( zeta2*zeta2+zeta1*zeta1-one )*half
347 c = zeta1*zeta1
348 IF( b.GE.zero ) THEN
349 t = dble( -c / ( b+sqrt( b*b+c ) ) )
350 ELSE
351 t = dble( b - sqrt( b*b+c ) )
352 END IF
353 sine = -( alpha / absest ) / t
354 cosine = -( gamma / absest ) / ( one+t )
355 sestpr = sqrt( one+t+four*eps*eps*norma )*absest
356 END IF
357 tmp = dble( sqrt( sine * dconjg( sine )
358 $ + cosine * dconjg( cosine ) ) )
359 s = sine / tmp
360 c = cosine / tmp
361 RETURN
362*
363 END IF
364 END IF
365 RETURN
366*
367* End of ZLAIC1
368*
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the caller graph for this function: