LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
slaqz2.f
Go to the documentation of this file.
1*> \brief \b SLAQZ2
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLAQZ2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqz2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqz2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqz2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SLAQZ2( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
22* $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
23* IMPLICIT NONE
24*
25* Arguments
26* LOGICAL, INTENT( IN ) :: ILQ, ILZ
27* INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
28* $ NQ, NZ, QSTART, ZSTART, IHI
29* REAL :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> SLAQZ2 chases a 2x2 shift bulge in a matrix pencil down a single position
39*> \endverbatim
40*
41*
42* Arguments:
43* ==========
44*
45*>
46*> \param[in] ILQ
47*> \verbatim
48*> ILQ is LOGICAL
49*> Determines whether or not to update the matrix Q
50*> \endverbatim
51*>
52*> \param[in] ILZ
53*> \verbatim
54*> ILZ is LOGICAL
55*> Determines whether or not to update the matrix Z
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> Index indicating the position of the bulge.
62*> On entry, the bulge is located in
63*> (A(k+1:k+2,k:k+1),B(k+1:k+2,k:k+1)).
64*> On exit, the bulge is located in
65*> (A(k+2:k+3,k+1:k+2),B(k+2:k+3,k+1:k+2)).
66*> \endverbatim
67*>
68*> \param[in] ISTARTM
69*> \verbatim
70*> ISTARTM is INTEGER
71*> \endverbatim
72*>
73*> \param[in] ISTOPM
74*> \verbatim
75*> ISTOPM is INTEGER
76*> Updates to (A,B) are restricted to
77*> (istartm:k+3,k:istopm). It is assumed
78*> without checking that istartm <= k+1 and
79*> k+2 <= istopm
80*> \endverbatim
81*>
82*> \param[in] IHI
83*> \verbatim
84*> IHI is INTEGER
85*> \endverbatim
86*>
87*> \param[inout] A
88*> \verbatim
89*> A is REAL array, dimension (LDA,N)
90*> \endverbatim
91*>
92*> \param[in] LDA
93*> \verbatim
94*> LDA is INTEGER
95*> The leading dimension of A as declared in
96*> the calling procedure.
97*> \endverbatim
98*
99*> \param[inout] B
100*> \verbatim
101*> B is REAL array, dimension (LDB,N)
102*> \endverbatim
103*>
104*> \param[in] LDB
105*> \verbatim
106*> LDB is INTEGER
107*> The leading dimension of B as declared in
108*> the calling procedure.
109*> \endverbatim
110*>
111*> \param[in] NQ
112*> \verbatim
113*> NQ is INTEGER
114*> The order of the matrix Q
115*> \endverbatim
116*>
117*> \param[in] QSTART
118*> \verbatim
119*> QSTART is INTEGER
120*> Start index of the matrix Q. Rotations are applied
121*> To columns k+2-qStart:k+4-qStart of Q.
122*> \endverbatim
123*
124*> \param[inout] Q
125*> \verbatim
126*> Q is REAL array, dimension (LDQ,NQ)
127*> \endverbatim
128*>
129*> \param[in] LDQ
130*> \verbatim
131*> LDQ is INTEGER
132*> The leading dimension of Q as declared in
133*> the calling procedure.
134*> \endverbatim
135*>
136*> \param[in] NZ
137*> \verbatim
138*> NZ is INTEGER
139*> The order of the matrix Z
140*> \endverbatim
141*>
142*> \param[in] ZSTART
143*> \verbatim
144*> ZSTART is INTEGER
145*> Start index of the matrix Z. Rotations are applied
146*> To columns k+1-qStart:k+3-qStart of Z.
147*> \endverbatim
148*
149*> \param[inout] Z
150*> \verbatim
151*> Z is REAL array, dimension (LDZ,NZ)
152*> \endverbatim
153*>
154*> \param[in] LDZ
155*> \verbatim
156*> LDZ is INTEGER
157*> The leading dimension of Q as declared in
158*> the calling procedure.
159*> \endverbatim
160*
161* Authors:
162* ========
163*
164*> \author Thijs Steel, KU Leuven
165*
166*> \date May 2020
167*
168*> \ingroup laqz2
169*>
170* =====================================================================
171 SUBROUTINE slaqz2( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
172 $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
173 IMPLICIT NONE
174*
175* Arguments
176 LOGICAL, INTENT( IN ) :: ILQ, ILZ
177 INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
178 $ nq, nz, qstart, zstart, ihi
179 REAL :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
180*
181* Parameters
182 REAL :: ZERO, ONE, HALF
183 parameter( zero = 0.0, one = 1.0, half = 0.5 )
184*
185* Local variables
186 REAL :: H( 2, 3 ), C1, S1, C2, S2, TEMP
187*
188* External functions
189 EXTERNAL :: slartg, srot
190*
191 IF( k+2 .EQ. ihi ) THEN
192* Shift is located on the edge of the matrix, remove it
193 h = b( ihi-1:ihi, ihi-2:ihi )
194* Make H upper triangular
195 CALL slartg( h( 1, 1 ), h( 2, 1 ), c1, s1, temp )
196 h( 2, 1 ) = zero
197 h( 1, 1 ) = temp
198 CALL srot( 2, h( 1, 2 ), 2, h( 2, 2 ), 2, c1, s1 )
199*
200 CALL slartg( h( 2, 3 ), h( 2, 2 ), c1, s1, temp )
201 CALL srot( 1, h( 1, 3 ), 1, h( 1, 2 ), 1, c1, s1 )
202 CALL slartg( h( 1, 2 ), h( 1, 1 ), c2, s2, temp )
203*
204 CALL srot( ihi-istartm+1, b( istartm, ihi ), 1, b( istartm,
205 $ ihi-1 ), 1, c1, s1 )
206 CALL srot( ihi-istartm+1, b( istartm, ihi-1 ), 1, b( istartm,
207 $ ihi-2 ), 1, c2, s2 )
208 b( ihi-1, ihi-2 ) = zero
209 b( ihi, ihi-2 ) = zero
210 CALL srot( ihi-istartm+1, a( istartm, ihi ), 1, a( istartm,
211 $ ihi-1 ), 1, c1, s1 )
212 CALL srot( ihi-istartm+1, a( istartm, ihi-1 ), 1, a( istartm,
213 $ ihi-2 ), 1, c2, s2 )
214 IF ( ilz ) THEN
215 CALL srot( nz, z( 1, ihi-zstart+1 ), 1, z( 1, ihi-1-zstart+
216 $ 1 ), 1, c1, s1 )
217 CALL srot( nz, z( 1, ihi-1-zstart+1 ), 1, z( 1,
218 $ ihi-2-zstart+1 ), 1, c2, s2 )
219 END IF
220*
221 CALL slartg( a( ihi-1, ihi-2 ), a( ihi, ihi-2 ), c1, s1,
222 $ temp )
223 a( ihi-1, ihi-2 ) = temp
224 a( ihi, ihi-2 ) = zero
225 CALL srot( istopm-ihi+2, a( ihi-1, ihi-1 ), lda, a( ihi,
226 $ ihi-1 ), lda, c1, s1 )
227 CALL srot( istopm-ihi+2, b( ihi-1, ihi-1 ), ldb, b( ihi,
228 $ ihi-1 ), ldb, c1, s1 )
229 IF ( ilq ) THEN
230 CALL srot( nq, q( 1, ihi-1-qstart+1 ), 1, q( 1, ihi-qstart+
231 $ 1 ), 1, c1, s1 )
232 END IF
233*
234 CALL slartg( b( ihi, ihi ), b( ihi, ihi-1 ), c1, s1, temp )
235 b( ihi, ihi ) = temp
236 b( ihi, ihi-1 ) = zero
237 CALL srot( ihi-istartm, b( istartm, ihi ), 1, b( istartm,
238 $ ihi-1 ), 1, c1, s1 )
239 CALL srot( ihi-istartm+1, a( istartm, ihi ), 1, a( istartm,
240 $ ihi-1 ), 1, c1, s1 )
241 IF ( ilz ) THEN
242 CALL srot( nz, z( 1, ihi-zstart+1 ), 1, z( 1, ihi-1-zstart+
243 $ 1 ), 1, c1, s1 )
244 END IF
245*
246 ELSE
247*
248* Normal operation, move bulge down
249*
250 h = b( k+1:k+2, k:k+2 )
251*
252* Make H upper triangular
253*
254 CALL slartg( h( 1, 1 ), h( 2, 1 ), c1, s1, temp )
255 h( 2, 1 ) = zero
256 h( 1, 1 ) = temp
257 CALL srot( 2, h( 1, 2 ), 2, h( 2, 2 ), 2, c1, s1 )
258*
259* Calculate Z1 and Z2
260*
261 CALL slartg( h( 2, 3 ), h( 2, 2 ), c1, s1, temp )
262 CALL srot( 1, h( 1, 3 ), 1, h( 1, 2 ), 1, c1, s1 )
263 CALL slartg( h( 1, 2 ), h( 1, 1 ), c2, s2, temp )
264*
265* Apply transformations from the right
266*
267 CALL srot( k+3-istartm+1, a( istartm, k+2 ), 1, a( istartm,
268 $ k+1 ), 1, c1, s1 )
269 CALL srot( k+3-istartm+1, a( istartm, k+1 ), 1, a( istartm,
270 $ k ), 1, c2, s2 )
271 CALL srot( k+2-istartm+1, b( istartm, k+2 ), 1, b( istartm,
272 $ k+1 ), 1, c1, s1 )
273 CALL srot( k+2-istartm+1, b( istartm, k+1 ), 1, b( istartm,
274 $ k ), 1, c2, s2 )
275 IF ( ilz ) THEN
276 CALL srot( nz, z( 1, k+2-zstart+1 ), 1, z( 1, k+1-zstart+
277 $ 1 ), 1, c1, s1 )
278 CALL srot( nz, z( 1, k+1-zstart+1 ), 1, z( 1, k-zstart+1 ),
279 $ 1, c2, s2 )
280 END IF
281 b( k+1, k ) = zero
282 b( k+2, k ) = zero
283*
284* Calculate Q1 and Q2
285*
286 CALL slartg( a( k+2, k ), a( k+3, k ), c1, s1, temp )
287 a( k+2, k ) = temp
288 a( k+3, k ) = zero
289 CALL slartg( a( k+1, k ), a( k+2, k ), c2, s2, temp )
290 a( k+1, k ) = temp
291 a( k+2, k ) = zero
292*
293* Apply transformations from the left
294*
295 CALL srot( istopm-k, a( k+2, k+1 ), lda, a( k+3, k+1 ), lda,
296 $ c1, s1 )
297 CALL srot( istopm-k, a( k+1, k+1 ), lda, a( k+2, k+1 ), lda,
298 $ c2, s2 )
299*
300 CALL srot( istopm-k, b( k+2, k+1 ), ldb, b( k+3, k+1 ), ldb,
301 $ c1, s1 )
302 CALL srot( istopm-k, b( k+1, k+1 ), ldb, b( k+2, k+1 ), ldb,
303 $ c2, s2 )
304 IF ( ilq ) THEN
305 CALL srot( nq, q( 1, k+2-qstart+1 ), 1, q( 1, k+3-qstart+
306 $ 1 ), 1, c1, s1 )
307 CALL srot( nq, q( 1, k+1-qstart+1 ), 1, q( 1, k+2-qstart+
308 $ 1 ), 1, c2, s2 )
309 END IF
310*
311 END IF
312*
313* End of SLAQZ2
314*
315 END SUBROUTINE
subroutine slaqz2(ilq, ilz, k, istartm, istopm, ihi, a, lda, b, ldb, nq, qstart, q, ldq, nz, zstart, z, ldz)
SLAQZ2
Definition slaqz2.f:173
subroutine slartg(f, g, c, s, r)
SLARTG generates a plane rotation with real cosine and real sine.
Definition slartg.f90:111
subroutine srot(n, sx, incx, sy, incy, c, s)
SROT
Definition srot.f:92