LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine sget03 | ( | integer | n, |
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( ldainv, * ) | ainv, | ||
integer | ldainv, | ||
real, dimension( ldwork, * ) | work, | ||
integer | ldwork, | ||
real, dimension( * ) | rwork, | ||
real | rcond, | ||
real | resid | ||
) |
SGET03
SGET03 computes the residual for a general matrix times its inverse: norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ), where EPS is the machine epsilon.
[in] | N | N is INTEGER The number of rows and columns of the matrix A. N >= 0. |
[in] | A | A is REAL array, dimension (LDA,N) The original N x N matrix A. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[in] | AINV | AINV is REAL array, dimension (LDAINV,N) The inverse of the matrix A. |
[in] | LDAINV | LDAINV is INTEGER The leading dimension of the array AINV. LDAINV >= max(1,N). |
[out] | WORK | WORK is REAL array, dimension (LDWORK,N) |
[in] | LDWORK | LDWORK is INTEGER The leading dimension of the array WORK. LDWORK >= max(1,N). |
[out] | RWORK | RWORK is REAL array, dimension (N) |
[out] | RCOND | RCOND is REAL The reciprocal of the condition number of A, computed as ( 1/norm(A) ) / norm(AINV). |
[out] | RESID | RESID is REAL norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS ) |
Definition at line 107 of file sget03.f.