LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssytrf_rk()

subroutine ssytrf_rk ( character uplo,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) e,
integer, dimension( * ) ipiv,
real, dimension( * ) work,
integer lwork,
integer info )

SSYTRF_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm).

Download SSYTRF_RK + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> SSYTRF_RK computes the factorization of a real symmetric matrix A
!> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
!>
!>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
!>
!> where U (or L) is unit upper (or lower) triangular matrix,
!> U**T (or L**T) is the transpose of U (or L), P is a permutation
!> matrix, P**T is the transpose of P, and D is symmetric and block
!> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
!>
!> This is the blocked version of the algorithm, calling Level 3 BLAS.
!> For more information see Further Details section.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrix A is stored:
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the symmetric matrix A.
!>            If UPLO = 'U': the leading N-by-N upper triangular part
!>            of A contains the upper triangular part of the matrix A,
!>            and the strictly lower triangular part of A is not
!>            referenced.
!>
!>            If UPLO = 'L': the leading N-by-N lower triangular part
!>            of A contains the lower triangular part of the matrix A,
!>            and the strictly upper triangular part of A is not
!>            referenced.
!>
!>          On exit, contains:
!>            a) ONLY diagonal elements of the symmetric block diagonal
!>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
!>               (superdiagonal (or subdiagonal) elements of D
!>                are stored on exit in array E), and
!>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
!>               If UPLO = 'L': factor L in the subdiagonal part of A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]E
!>          E is REAL array, dimension (N)
!>          On exit, contains the superdiagonal (or subdiagonal)
!>          elements of the symmetric block diagonal matrix D
!>          with 1-by-1 or 2-by-2 diagonal blocks, where
!>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
!>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
!>
!>          NOTE: For 1-by-1 diagonal block D(k), where
!>          1 <= k <= N, the element E(k) is set to 0 in both
!>          UPLO = 'U' or UPLO = 'L' cases.
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          IPIV describes the permutation matrix P in the factorization
!>          of matrix A as follows. The absolute value of IPIV(k)
!>          represents the index of row and column that were
!>          interchanged with the k-th row and column. The value of UPLO
!>          describes the order in which the interchanges were applied.
!>          Also, the sign of IPIV represents the block structure of
!>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
!>          diagonal blocks which correspond to 1 or 2 interchanges
!>          at each factorization step. For more info see Further
!>          Details section.
!>
!>          If UPLO = 'U',
!>          ( in factorization order, k decreases from N to 1 ):
!>            a) A single positive entry IPIV(k) > 0 means:
!>               D(k,k) is a 1-by-1 diagonal block.
!>               If IPIV(k) != k, rows and columns k and IPIV(k) were
!>               interchanged in the matrix A(1:N,1:N);
!>               If IPIV(k) = k, no interchange occurred.
!>
!>            b) A pair of consecutive negative entries
!>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
!>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
!>               (NOTE: negative entries in IPIV appear ONLY in pairs).
!>               1) If -IPIV(k) != k, rows and columns
!>                  k and -IPIV(k) were interchanged
!>                  in the matrix A(1:N,1:N).
!>                  If -IPIV(k) = k, no interchange occurred.
!>               2) If -IPIV(k-1) != k-1, rows and columns
!>                  k-1 and -IPIV(k-1) were interchanged
!>                  in the matrix A(1:N,1:N).
!>                  If -IPIV(k-1) = k-1, no interchange occurred.
!>
!>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
!>
!>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
!>
!>          If UPLO = 'L',
!>          ( in factorization order, k increases from 1 to N ):
!>            a) A single positive entry IPIV(k) > 0 means:
!>               D(k,k) is a 1-by-1 diagonal block.
!>               If IPIV(k) != k, rows and columns k and IPIV(k) were
!>               interchanged in the matrix A(1:N,1:N).
!>               If IPIV(k) = k, no interchange occurred.
!>
!>            b) A pair of consecutive negative entries
!>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
!>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
!>               (NOTE: negative entries in IPIV appear ONLY in pairs).
!>               1) If -IPIV(k) != k, rows and columns
!>                  k and -IPIV(k) were interchanged
!>                  in the matrix A(1:N,1:N).
!>                  If -IPIV(k) = k, no interchange occurred.
!>               2) If -IPIV(k+1) != k+1, rows and columns
!>                  k-1 and -IPIV(k-1) were interchanged
!>                  in the matrix A(1:N,1:N).
!>                  If -IPIV(k+1) = k+1, no interchange occurred.
!>
!>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
!>
!>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK)).
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= 1.  For best performance
!>          LWORK >= N*NB, where NB is the block size returned
!>          by ILAENV.
!>
!>          If LWORK = -1, then a workspace query is assumed;
!>          the routine only calculates the optimal size of the WORK
!>          array, returns this value as the first entry of the WORK
!>          array, and no error message related to LWORK is issued
!>          by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>
!>          < 0: If INFO = -k, the k-th argument had an illegal value
!>
!>          > 0: If INFO = k, the matrix A is singular, because:
!>                 If UPLO = 'U': column k in the upper
!>                 triangular part of A contains all zeros.
!>                 If UPLO = 'L': column k in the lower
!>                 triangular part of A contains all zeros.
!>
!>               Therefore D(k,k) is exactly zero, and superdiagonal
!>               elements of column k of U (or subdiagonal elements of
!>               column k of L ) are all zeros. The factorization has
!>               been completed, but the block diagonal matrix D is
!>               exactly singular, and division by zero will occur if
!>               it is used to solve a system of equations.
!>
!>               NOTE: INFO only stores the first occurrence of
!>               a singularity, any subsequent occurrence of singularity
!>               is not stored in INFO even though the factorization
!>               always completes.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> TODO: put correct description
!> 
Contributors:
!>
!>  December 2016,  Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 255 of file ssytrf_rk.f.

257*
258* -- LAPACK computational routine --
259* -- LAPACK is a software package provided by Univ. of Tennessee, --
260* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
261*
262* .. Scalar Arguments ..
263 CHARACTER UPLO
264 INTEGER INFO, LDA, LWORK, N
265* ..
266* .. Array Arguments ..
267 INTEGER IPIV( * )
268 REAL A( LDA, * ), E( * ), WORK( * )
269* ..
270*
271* =====================================================================
272*
273* .. Local Scalars ..
274 LOGICAL LQUERY, UPPER
275 INTEGER I, IINFO, IP, IWS, K, KB, LDWORK, LWKOPT,
276 $ NB, NBMIN
277* ..
278* .. External Functions ..
279 LOGICAL LSAME
280 INTEGER ILAENV
281 REAL SROUNDUP_LWORK
282 EXTERNAL lsame, ilaenv, sroundup_lwork
283* ..
284* .. External Subroutines ..
285 EXTERNAL slasyf_rk, ssytf2_rk, sswap,
286 $ xerbla
287* ..
288* .. Intrinsic Functions ..
289 INTRINSIC abs, max
290* ..
291* .. Executable Statements ..
292*
293* Test the input parameters.
294*
295 info = 0
296 upper = lsame( uplo, 'U' )
297 lquery = ( lwork.EQ.-1 )
298 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
299 info = -1
300 ELSE IF( n.LT.0 ) THEN
301 info = -2
302 ELSE IF( lda.LT.max( 1, n ) ) THEN
303 info = -4
304 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
305 info = -8
306 END IF
307*
308 IF( info.EQ.0 ) THEN
309*
310* Determine the block size
311*
312 nb = ilaenv( 1, 'SSYTRF_RK', uplo, n, -1, -1, -1 )
313 lwkopt = max( 1, n*nb )
314 work( 1 ) = sroundup_lwork( lwkopt )
315 END IF
316*
317 IF( info.NE.0 ) THEN
318 CALL xerbla( 'SSYTRF_RK', -info )
319 RETURN
320 ELSE IF( lquery ) THEN
321 RETURN
322 END IF
323*
324 nbmin = 2
325 ldwork = n
326 IF( nb.GT.1 .AND. nb.LT.n ) THEN
327 iws = ldwork*nb
328 IF( lwork.LT.iws ) THEN
329 nb = max( lwork / ldwork, 1 )
330 nbmin = max( 2, ilaenv( 2, 'SSYTRF_RK',
331 $ uplo, n, -1, -1, -1 ) )
332 END IF
333 ELSE
334 iws = 1
335 END IF
336 IF( nb.LT.nbmin )
337 $ nb = n
338*
339 IF( upper ) THEN
340*
341* Factorize A as U*D*U**T using the upper triangle of A
342*
343* K is the main loop index, decreasing from N to 1 in steps of
344* KB, where KB is the number of columns factorized by SLASYF_RK;
345* KB is either NB or NB-1, or K for the last block
346*
347 k = n
348 10 CONTINUE
349*
350* If K < 1, exit from loop
351*
352 IF( k.LT.1 )
353 $ GO TO 15
354*
355 IF( k.GT.nb ) THEN
356*
357* Factorize columns k-kb+1:k of A and use blocked code to
358* update columns 1:k-kb
359*
360 CALL slasyf_rk( uplo, k, nb, kb, a, lda, e,
361 $ ipiv, work, ldwork, iinfo )
362 ELSE
363*
364* Use unblocked code to factorize columns 1:k of A
365*
366 CALL ssytf2_rk( uplo, k, a, lda, e, ipiv, iinfo )
367 kb = k
368 END IF
369*
370* Set INFO on the first occurrence of a zero pivot
371*
372 IF( info.EQ.0 .AND. iinfo.GT.0 )
373 $ info = iinfo
374*
375* No need to adjust IPIV
376*
377*
378* Apply permutations to the leading panel 1:k-1
379*
380* Read IPIV from the last block factored, i.e.
381* indices k-kb+1:k and apply row permutations to the
382* last k+1 colunms k+1:N after that block
383* (We can do the simple loop over IPIV with decrement -1,
384* since the ABS value of IPIV( I ) represents the row index
385* of the interchange with row i in both 1x1 and 2x2 pivot cases)
386*
387 IF( k.LT.n ) THEN
388 DO i = k, ( k - kb + 1 ), -1
389 ip = abs( ipiv( i ) )
390 IF( ip.NE.i ) THEN
391 CALL sswap( n-k, a( i, k+1 ), lda,
392 $ a( ip, k+1 ), lda )
393 END IF
394 END DO
395 END IF
396*
397* Decrease K and return to the start of the main loop
398*
399 k = k - kb
400 GO TO 10
401*
402* This label is the exit from main loop over K decreasing
403* from N to 1 in steps of KB
404*
405 15 CONTINUE
406*
407 ELSE
408*
409* Factorize A as L*D*L**T using the lower triangle of A
410*
411* K is the main loop index, increasing from 1 to N in steps of
412* KB, where KB is the number of columns factorized by SLASYF_RK;
413* KB is either NB or NB-1, or N-K+1 for the last block
414*
415 k = 1
416 20 CONTINUE
417*
418* If K > N, exit from loop
419*
420 IF( k.GT.n )
421 $ GO TO 35
422*
423 IF( k.LE.n-nb ) THEN
424*
425* Factorize columns k:k+kb-1 of A and use blocked code to
426* update columns k+kb:n
427*
428 CALL slasyf_rk( uplo, n-k+1, nb, kb, a( k, k ), lda,
429 $ e( k ),
430 $ ipiv( k ), work, ldwork, iinfo )
431
432
433 ELSE
434*
435* Use unblocked code to factorize columns k:n of A
436*
437 CALL ssytf2_rk( uplo, n-k+1, a( k, k ), lda, e( k ),
438 $ ipiv( k ), iinfo )
439 kb = n - k + 1
440*
441 END IF
442*
443* Set INFO on the first occurrence of a zero pivot
444*
445 IF( info.EQ.0 .AND. iinfo.GT.0 )
446 $ info = iinfo + k - 1
447*
448* Adjust IPIV
449*
450 DO i = k, k + kb - 1
451 IF( ipiv( i ).GT.0 ) THEN
452 ipiv( i ) = ipiv( i ) + k - 1
453 ELSE
454 ipiv( i ) = ipiv( i ) - k + 1
455 END IF
456 END DO
457*
458* Apply permutations to the leading panel 1:k-1
459*
460* Read IPIV from the last block factored, i.e.
461* indices k:k+kb-1 and apply row permutations to the
462* first k-1 colunms 1:k-1 before that block
463* (We can do the simple loop over IPIV with increment 1,
464* since the ABS value of IPIV( I ) represents the row index
465* of the interchange with row i in both 1x1 and 2x2 pivot cases)
466*
467 IF( k.GT.1 ) THEN
468 DO i = k, ( k + kb - 1 ), 1
469 ip = abs( ipiv( i ) )
470 IF( ip.NE.i ) THEN
471 CALL sswap( k-1, a( i, 1 ), lda,
472 $ a( ip, 1 ), lda )
473 END IF
474 END DO
475 END IF
476*
477* Increase K and return to the start of the main loop
478*
479 k = k + kb
480 GO TO 20
481*
482* This label is the exit from main loop over K increasing
483* from 1 to N in steps of KB
484*
485 35 CONTINUE
486*
487* End Lower
488*
489 END IF
490*
491 work( 1 ) = sroundup_lwork( lwkopt )
492 RETURN
493*
494* End of SSYTRF_RK
495*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssytf2_rk(uplo, n, a, lda, e, ipiv, info)
SSYTF2_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Ka...
Definition ssytf2_rk.f:239
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slasyf_rk(uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
SLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using bounded Bunch-...
Definition slasyf_rk.f:260
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sswap(n, sx, incx, sy, incy)
SSWAP
Definition sswap.f:82
Here is the call graph for this function:
Here is the caller graph for this function: