LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine ztpt03 | ( | character | uplo, |
character | trans, | ||
character | diag, | ||
integer | n, | ||
integer | nrhs, | ||
complex*16, dimension( * ) | ap, | ||
double precision | scale, | ||
double precision, dimension( * ) | cnorm, | ||
double precision | tscal, | ||
complex*16, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
complex*16, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
complex*16, dimension( * ) | work, | ||
double precision | resid ) |
ZTPT03
!> !> ZTPT03 computes the residual for the solution to a scaled triangular !> system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b, !> when the triangular matrix A is stored in packed format. Here A**T !> denotes the transpose of A, A**H denotes the conjugate transpose of !> A, s is a scalar, and x and b are N by NRHS matrices. The test ratio !> is the maximum over the number of right hand sides of !> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), !> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
[in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the operation applied to A. !> = 'N': A *x = s*b (No transpose) !> = 'T': A**T *x = s*b (Transpose) !> = 'C': A**H *x = s*b (Conjugate transpose) !> |
[in] | DIAG | !> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices X and B. NRHS >= 0. !> |
[in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', !> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. !> |
[in] | SCALE | !> SCALE is DOUBLE PRECISION !> The scaling factor s used in solving the triangular system. !> |
[in] | CNORM | !> CNORM is DOUBLE PRECISION array, dimension (N) !> The 1-norms of the columns of A, not counting the diagonal. !> |
[in] | TSCAL | !> TSCAL is DOUBLE PRECISION !> The scaling factor used in computing the 1-norms in CNORM. !> CNORM actually contains the column norms of TSCAL*A. !> |
[in] | X | !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> The computed solution vectors for the system of linear !> equations. !> |
[in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !> |
[in] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side vectors for the system of linear !> equations. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (N) !> |
[out] | RESID | !> RESID is DOUBLE PRECISION !> The maximum over the number of right hand sides of !> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). !> |
Definition at line 160 of file ztpt03.f.