LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ztpt03()

subroutine ztpt03 ( character  uplo,
character  trans,
character  diag,
integer  n,
integer  nrhs,
complex*16, dimension( * )  ap,
double precision  scale,
double precision, dimension( * )  cnorm,
double precision  tscal,
complex*16, dimension( ldx, * )  x,
integer  ldx,
complex*16, dimension( ldb, * )  b,
integer  ldb,
complex*16, dimension( * )  work,
double precision  resid 
)

ZTPT03

Purpose:
 ZTPT03 computes the residual for the solution to a scaled triangular
 system of equations A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b,
 when the triangular matrix A is stored in packed format.  Here A**T
 denotes the transpose of A, A**H denotes the conjugate transpose of
 A, s is a scalar, and x and b are N by NRHS matrices.  The test ratio
 is the maximum over the number of right hand sides of
    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
 where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A is upper or lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the operation applied to A.
          = 'N':  A *x = s*b     (No transpose)
          = 'T':  A**T *x = s*b  (Transpose)
          = 'C':  A**H *x = s*b  (Conjugate transpose)
[in]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices X and B.  NRHS >= 0.
[in]AP
          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          The upper or lower triangular matrix A, packed columnwise in
          a linear array.  The j-th column of A is stored in the array
          AP as follows:
          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
[in]SCALE
          SCALE is DOUBLE PRECISION
          The scaling factor s used in solving the triangular system.
[in]CNORM
          CNORM is DOUBLE PRECISION array, dimension (N)
          The 1-norms of the columns of A, not counting the diagonal.
[in]TSCAL
          TSCAL is DOUBLE PRECISION
          The scaling factor used in computing the 1-norms in CNORM.
          CNORM actually contains the column norms of TSCAL*A.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]WORK
          WORK is COMPLEX*16 array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 160 of file ztpt03.f.

162*
163* -- LAPACK test routine --
164* -- LAPACK is a software package provided by Univ. of Tennessee, --
165* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
166*
167* .. Scalar Arguments ..
168 CHARACTER DIAG, TRANS, UPLO
169 INTEGER LDB, LDX, N, NRHS
170 DOUBLE PRECISION RESID, SCALE, TSCAL
171* ..
172* .. Array Arguments ..
173 DOUBLE PRECISION CNORM( * )
174 COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
175* ..
176*
177* =====================================================================
178*
179* .. Parameters ..
180 DOUBLE PRECISION ONE, ZERO
181 parameter( one = 1.0d+0, zero = 0.0d+0 )
182* ..
183* .. Local Scalars ..
184 INTEGER IX, J, JJ
185 DOUBLE PRECISION EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
186* ..
187* .. External Functions ..
188 LOGICAL LSAME
189 INTEGER IZAMAX
190 DOUBLE PRECISION DLAMCH
191 EXTERNAL lsame, izamax, dlamch
192* ..
193* .. External Subroutines ..
194 EXTERNAL zaxpy, zcopy, zdscal, ztpmv
195* ..
196* .. Intrinsic Functions ..
197 INTRINSIC abs, dble, dcmplx, max
198* ..
199* .. Executable Statements ..
200*
201* Quick exit if N = 0.
202*
203 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
204 resid = zero
205 RETURN
206 END IF
207 eps = dlamch( 'Epsilon' )
208 smlnum = dlamch( 'Safe minimum' )
209*
210* Compute the norm of the triangular matrix A using the column
211* norms already computed by ZLATPS.
212*
213 tnorm = 0.d0
214 IF( lsame( diag, 'N' ) ) THEN
215 IF( lsame( uplo, 'U' ) ) THEN
216 jj = 1
217 DO 10 j = 1, n
218 tnorm = max( tnorm, tscal*abs( ap( jj ) )+cnorm( j ) )
219 jj = jj + j
220 10 CONTINUE
221 ELSE
222 jj = 1
223 DO 20 j = 1, n
224 tnorm = max( tnorm, tscal*abs( ap( jj ) )+cnorm( j ) )
225 jj = jj + n - j + 1
226 20 CONTINUE
227 END IF
228 ELSE
229 DO 30 j = 1, n
230 tnorm = max( tnorm, tscal+cnorm( j ) )
231 30 CONTINUE
232 END IF
233*
234* Compute the maximum over the number of right hand sides of
235* norm(op(A)*x - s*b) / ( norm(A) * norm(x) * EPS ).
236*
237 resid = zero
238 DO 40 j = 1, nrhs
239 CALL zcopy( n, x( 1, j ), 1, work, 1 )
240 ix = izamax( n, work, 1 )
241 xnorm = max( one, abs( x( ix, j ) ) )
242 xscal = ( one / xnorm ) / dble( n )
243 CALL zdscal( n, xscal, work, 1 )
244 CALL ztpmv( uplo, trans, diag, n, ap, work, 1 )
245 CALL zaxpy( n, dcmplx( -scale*xscal ), b( 1, j ), 1, work, 1 )
246 ix = izamax( n, work, 1 )
247 err = tscal*abs( work( ix ) )
248 ix = izamax( n, x( 1, j ), 1 )
249 xnorm = abs( x( ix, j ) )
250 IF( err*smlnum.LE.xnorm ) THEN
251 IF( xnorm.GT.zero )
252 $ err = err / xnorm
253 ELSE
254 IF( err.GT.zero )
255 $ err = one / eps
256 END IF
257 IF( err*smlnum.LE.tnorm ) THEN
258 IF( tnorm.GT.zero )
259 $ err = err / tnorm
260 ELSE
261 IF( err.GT.zero )
262 $ err = one / eps
263 END IF
264 resid = max( resid, err )
265 40 CONTINUE
266*
267 RETURN
268*
269* End of ZTPT03
270*
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
integer function izamax(n, zx, incx)
IZAMAX
Definition izamax.f:71
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zdscal(n, da, zx, incx)
ZDSCAL
Definition zdscal.f:78
subroutine ztpmv(uplo, trans, diag, n, ap, x, incx)
ZTPMV
Definition ztpmv.f:142
Here is the call graph for this function:
Here is the caller graph for this function: