LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cqrt02.f
Go to the documentation of this file.
1*> \brief \b CQRT02
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CQRT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
12* RWORK, RESULT )
13*
14* .. Scalar Arguments ..
15* INTEGER K, LDA, LWORK, M, N
16* ..
17* .. Array Arguments ..
18* REAL RESULT( * ), RWORK( * )
19* COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
20* $ R( LDA, * ), TAU( * ), WORK( LWORK )
21* ..
22*
23*
24*> \par Purpose:
25* =============
26*>
27*> \verbatim
28*>
29*> CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with
30*> orthonormal columns that is defined as the product of k elementary
31*> reflectors.
32*>
33*> Given the QR factorization of an m-by-n matrix A, CQRT02 generates
34*> the orthogonal matrix Q defined by the factorization of the first k
35*> columns of A; it compares R(1:n,1:k) with Q(1:m,1:n)'*A(1:m,1:k),
36*> and checks that the columns of Q are orthonormal.
37*> \endverbatim
38*
39* Arguments:
40* ==========
41*
42*> \param[in] M
43*> \verbatim
44*> M is INTEGER
45*> The number of rows of the matrix Q to be generated. M >= 0.
46*> \endverbatim
47*>
48*> \param[in] N
49*> \verbatim
50*> N is INTEGER
51*> The number of columns of the matrix Q to be generated.
52*> M >= N >= 0.
53*> \endverbatim
54*>
55*> \param[in] K
56*> \verbatim
57*> K is INTEGER
58*> The number of elementary reflectors whose product defines the
59*> matrix Q. N >= K >= 0.
60*> \endverbatim
61*>
62*> \param[in] A
63*> \verbatim
64*> A is COMPLEX array, dimension (LDA,N)
65*> The m-by-n matrix A which was factorized by CQRT01.
66*> \endverbatim
67*>
68*> \param[in] AF
69*> \verbatim
70*> AF is COMPLEX array, dimension (LDA,N)
71*> Details of the QR factorization of A, as returned by CGEQRF.
72*> See CGEQRF for further details.
73*> \endverbatim
74*>
75*> \param[out] Q
76*> \verbatim
77*> Q is COMPLEX array, dimension (LDA,N)
78*> \endverbatim
79*>
80*> \param[out] R
81*> \verbatim
82*> R is COMPLEX array, dimension (LDA,N)
83*> \endverbatim
84*>
85*> \param[in] LDA
86*> \verbatim
87*> LDA is INTEGER
88*> The leading dimension of the arrays A, AF, Q and R. LDA >= M.
89*> \endverbatim
90*>
91*> \param[in] TAU
92*> \verbatim
93*> TAU is COMPLEX array, dimension (N)
94*> The scalar factors of the elementary reflectors corresponding
95*> to the QR factorization in AF.
96*> \endverbatim
97*>
98*> \param[out] WORK
99*> \verbatim
100*> WORK is COMPLEX array, dimension (LWORK)
101*> \endverbatim
102*>
103*> \param[in] LWORK
104*> \verbatim
105*> LWORK is INTEGER
106*> The dimension of the array WORK.
107*> \endverbatim
108*>
109*> \param[out] RWORK
110*> \verbatim
111*> RWORK is REAL array, dimension (M)
112*> \endverbatim
113*>
114*> \param[out] RESULT
115*> \verbatim
116*> RESULT is REAL array, dimension (2)
117*> The test ratios:
118*> RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
119*> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
120*> \endverbatim
121*
122* Authors:
123* ========
124*
125*> \author Univ. of Tennessee
126*> \author Univ. of California Berkeley
127*> \author Univ. of Colorado Denver
128*> \author NAG Ltd.
129*
130*> \ingroup complex_lin
131*
132* =====================================================================
133 SUBROUTINE cqrt02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
134 $ RWORK, RESULT )
135*
136* -- LAPACK test routine --
137* -- LAPACK is a software package provided by Univ. of Tennessee, --
138* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
139*
140* .. Scalar Arguments ..
141 INTEGER K, LDA, LWORK, M, N
142* ..
143* .. Array Arguments ..
144 REAL RESULT( * ), RWORK( * )
145 COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
146 $ r( lda, * ), tau( * ), work( lwork )
147* ..
148*
149* =====================================================================
150*
151* .. Parameters ..
152 REAL ZERO, ONE
153 parameter( zero = 0.0e+0, one = 1.0e+0 )
154 COMPLEX ROGUE
155 parameter( rogue = ( -1.0e+10, -1.0e+10 ) )
156* ..
157* .. Local Scalars ..
158 INTEGER INFO
159 REAL ANORM, EPS, RESID
160* ..
161* .. External Functions ..
162 REAL CLANGE, CLANSY, SLAMCH
163 EXTERNAL clange, clansy, slamch
164* ..
165* .. External Subroutines ..
166 EXTERNAL cgemm, cherk, clacpy, claset, cungqr
167* ..
168* .. Intrinsic Functions ..
169 INTRINSIC cmplx, max, real
170* ..
171* .. Scalars in Common ..
172 CHARACTER*32 SRNAMT
173* ..
174* .. Common blocks ..
175 COMMON / srnamc / srnamt
176* ..
177* .. Executable Statements ..
178*
179 eps = slamch( 'Epsilon' )
180*
181* Copy the first k columns of the factorization to the array Q
182*
183 CALL claset( 'Full', m, n, rogue, rogue, q, lda )
184 CALL clacpy( 'Lower', m-1, k, af( 2, 1 ), lda, q( 2, 1 ), lda )
185*
186* Generate the first n columns of the matrix Q
187*
188 srnamt = 'CUNGQR'
189 CALL cungqr( m, n, k, q, lda, tau, work, lwork, info )
190*
191* Copy R(1:n,1:k)
192*
193 CALL claset( 'Full', n, k, cmplx( zero ), cmplx( zero ), r, lda )
194 CALL clacpy( 'Upper', n, k, af, lda, r, lda )
195*
196* Compute R(1:n,1:k) - Q(1:m,1:n)' * A(1:m,1:k)
197*
198 CALL cgemm( 'Conjugate transpose', 'No transpose', n, k, m,
199 $ cmplx( -one ), q, lda, a, lda, cmplx( one ), r, lda )
200*
201* Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
202*
203 anorm = clange( '1', m, k, a, lda, rwork )
204 resid = clange( '1', n, k, r, lda, rwork )
205 IF( anorm.GT.zero ) THEN
206 result( 1 ) = ( ( resid / real( max( 1, m ) ) ) / anorm ) / eps
207 ELSE
208 result( 1 ) = zero
209 END IF
210*
211* Compute I - Q'*Q
212*
213 CALL claset( 'Full', n, n, cmplx( zero ), cmplx( one ), r, lda )
214 CALL cherk( 'Upper', 'Conjugate transpose', n, m, -one, q, lda,
215 $ one, r, lda )
216*
217* Compute norm( I - Q'*Q ) / ( M * EPS ) .
218*
219 resid = clansy( '1', 'Upper', n, r, lda, rwork )
220*
221 result( 2 ) = ( resid / real( max( 1, m ) ) ) / eps
222*
223 RETURN
224*
225* End of CQRT02
226*
227 END
subroutine cqrt02(m, n, k, a, af, q, r, lda, tau, work, lwork, rwork, result)
CQRT02
Definition cqrt02.f:135
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
subroutine cherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
CHERK
Definition cherk.f:173
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:104
subroutine cungqr(m, n, k, a, lda, tau, work, lwork, info)
CUNGQR
Definition cungqr.f:126