LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cptt05()

subroutine cptt05 ( integer n,
integer nrhs,
real, dimension( * ) d,
complex, dimension( * ) e,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
complex, dimension( ldxact, * ) xact,
integer ldxact,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) reslts )

CPTT05

Purpose:
!>
!> CPTT05 tests the error bounds from iterative refinement for the
!> computed solution to a system of equations A*X = B, where A is a
!> Hermitian tridiagonal matrix of order n.
!>
!> RESLTS(1) = test of the error bound
!>           = norm(X - XACT) / ( norm(X) * FERR )
!>
!> A large value is returned if this ratio is not less than one.
!>
!> RESLTS(2) = residual from the iterative refinement routine
!>           = the maximum of BERR / ( NZ*EPS + (*) ), where
!>             (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
!>             and NZ = max. number of nonzeros in any row of A, plus 1
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The number of rows of the matrices X, B, and XACT, and the
!>          order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of columns of the matrices X, B, and XACT.
!>          NRHS >= 0.
!> 
[in]D
!>          D is REAL array, dimension (N)
!>          The n diagonal elements of the tridiagonal matrix A.
!> 
[in]E
!>          E is COMPLEX array, dimension (N-1)
!>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
!> 
[in]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side vectors for the system of linear
!>          equations.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          The computed solution vectors.  Each vector is stored as a
!>          column of the matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[in]XACT
!>          XACT is COMPLEX array, dimension (LDX,NRHS)
!>          The exact solution vectors.  Each vector is stored as a
!>          column of the matrix XACT.
!> 
[in]LDXACT
!>          LDXACT is INTEGER
!>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
!> 
[in]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bounds for each solution vector
!>          X.  If XTRUE is the true solution, FERR bounds the magnitude
!>          of the largest entry in (X - XTRUE) divided by the magnitude
!>          of the largest entry in X.
!> 
[in]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector (i.e., the smallest relative change in any entry of A
!>          or B that makes X an exact solution).
!> 
[out]RESLTS
!>          RESLTS is REAL array, dimension (2)
!>          The maximum over the NRHS solution vectors of the ratios:
!>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
!>          RESLTS(2) = BERR / ( NZ*EPS + (*) )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 148 of file cptt05.f.

150*
151* -- LAPACK test routine --
152* -- LAPACK is a software package provided by Univ. of Tennessee, --
153* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
154*
155* .. Scalar Arguments ..
156 INTEGER LDB, LDX, LDXACT, N, NRHS
157* ..
158* .. Array Arguments ..
159 REAL BERR( * ), D( * ), FERR( * ), RESLTS( * )
160 COMPLEX B( LDB, * ), E( * ), X( LDX, * ),
161 $ XACT( LDXACT, * )
162* ..
163*
164* =====================================================================
165*
166* .. Parameters ..
167 REAL ZERO, ONE
168 parameter( zero = 0.0e+0, one = 1.0e+0 )
169* ..
170* .. Local Scalars ..
171 INTEGER I, IMAX, J, K, NZ
172 REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
173 COMPLEX ZDUM
174* ..
175* .. External Functions ..
176 INTEGER ICAMAX
177 REAL SLAMCH
178 EXTERNAL icamax, slamch
179* ..
180* .. Intrinsic Functions ..
181 INTRINSIC abs, aimag, max, min, real
182* ..
183* .. Statement Functions ..
184 REAL CABS1
185* ..
186* .. Statement Function definitions ..
187 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
188* ..
189* .. Executable Statements ..
190*
191* Quick exit if N = 0 or NRHS = 0.
192*
193 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
194 reslts( 1 ) = zero
195 reslts( 2 ) = zero
196 RETURN
197 END IF
198*
199 eps = slamch( 'Epsilon' )
200 unfl = slamch( 'Safe minimum' )
201 ovfl = one / unfl
202 nz = 4
203*
204* Test 1: Compute the maximum of
205* norm(X - XACT) / ( norm(X) * FERR )
206* over all the vectors X and XACT using the infinity-norm.
207*
208 errbnd = zero
209 DO 30 j = 1, nrhs
210 imax = icamax( n, x( 1, j ), 1 )
211 xnorm = max( cabs1( x( imax, j ) ), unfl )
212 diff = zero
213 DO 10 i = 1, n
214 diff = max( diff, cabs1( x( i, j )-xact( i, j ) ) )
215 10 CONTINUE
216*
217 IF( xnorm.GT.one ) THEN
218 GO TO 20
219 ELSE IF( diff.LE.ovfl*xnorm ) THEN
220 GO TO 20
221 ELSE
222 errbnd = one / eps
223 GO TO 30
224 END IF
225*
226 20 CONTINUE
227 IF( diff / xnorm.LE.ferr( j ) ) THEN
228 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
229 ELSE
230 errbnd = one / eps
231 END IF
232 30 CONTINUE
233 reslts( 1 ) = errbnd
234*
235* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
236* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
237*
238 DO 50 k = 1, nrhs
239 IF( n.EQ.1 ) THEN
240 axbi = cabs1( b( 1, k ) ) + cabs1( d( 1 )*x( 1, k ) )
241 ELSE
242 axbi = cabs1( b( 1, k ) ) + cabs1( d( 1 )*x( 1, k ) ) +
243 $ cabs1( e( 1 ) )*cabs1( x( 2, k ) )
244 DO 40 i = 2, n - 1
245 tmp = cabs1( b( i, k ) ) + cabs1( e( i-1 ) )*
246 $ cabs1( x( i-1, k ) ) + cabs1( d( i )*x( i, k ) ) +
247 $ cabs1( e( i ) )*cabs1( x( i+1, k ) )
248 axbi = min( axbi, tmp )
249 40 CONTINUE
250 tmp = cabs1( b( n, k ) ) + cabs1( e( n-1 ) )*
251 $ cabs1( x( n-1, k ) ) + cabs1( d( n )*x( n, k ) )
252 axbi = min( axbi, tmp )
253 END IF
254 tmp = berr( k ) / ( nz*eps+nz*unfl / max( axbi, nz*unfl ) )
255 IF( k.EQ.1 ) THEN
256 reslts( 2 ) = tmp
257 ELSE
258 reslts( 2 ) = max( reslts( 2 ), tmp )
259 END IF
260 50 CONTINUE
261*
262 RETURN
263*
264* End of CPTT05
265*
integer function icamax(n, cx, incx)
ICAMAX
Definition icamax.f:71
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
Here is the caller graph for this function: